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Abstract

Assessing spatiotemporal interactions between species is of fundamental interest

to behavioural and community ecology. Observer-independent methods such as

camera trapping facilitate the study of interactions, but analyses are hampered

by the lack of comparative assessment of available approaches. We present a

flexible and expandable framework to simulate and explore spatiotemporal

interactions between species from camera trapping data with well-defined prop-

erties, and compare methods to detect such interactions in a two-species system

with two types of (spatio)temporal interactions: spatiotemporal avoidance (of a

site by a species after the presence of another species) and temporal segregation

(shifts in daily activity patterns between species), across a range of daily activity

patterns and interaction strengths. For spatiotemporal avoidance, we analysed

time intervals between species records using linear models, the Mann–Whitney

U-test, a permutation test and a test based on randomly generated records. For

temporal segregation, we applied a permutation test. Statistical power (the abil-

ity to detect an existing effect) for detecting spatiotemporal avoidance between

species was strongly affected by interaction strength, highest for linear models

and reliable above 50 records per species. Reliably detecting strong temporal

segregation required fewer records (10–20 records) but depended heavily on the

underlying activity pattern. All tests were valid (uniform distribution of

P-values under the null hypothesis) even at low sample sizes above a minimum

of 10 records per species. Linear models were the most suitable approach to

analyse spatiotemporal avoidance and can easily correct for other sources of

variation in interactions. The framework presented here can help to improve

survey design in camera trapping and be extended to more complex settings

(e.g. with imperfect detection). In addition, it allows researchers to validate the

methods used for inference of spatiotemporal interactions from camera trap-

ping data in their specific circumstances.

Introduction

Investigating biotic interactions is a central topic in

ecology due to their tremendous importance in shaping

community and ecosystem processes (Sinclair 2003; Tylia-

nakis et al. 2008). All species are embedded in complex

interaction networks and species interactions play a sig-

nificant role in determining population dynamics and

trophic control in ecosystems (Sinclair et al. 2003), in

shaping species distributions (Ara�ujo and Luoto 2007;

Wisz et al. 2013; Urban et al. 2016) and other important

ecological phenomena such as disease transmission (Ben-

ham and Broom 1989) or prey switching (Kjellander and

Nordstr€om 2003). This is particularly relevant as includ-

ing biotic interactions has been identified as one of the

greatest challenges in predicting species, community and
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ecosystem processes under ongoing global ecological

change (Tylianakis et al. 2008; Gilman et al. 2010).

Species interactions can range from mutually detrimen-

tal to antagonistic (detrimental to one species and benefi-

cial to the other) to commensal (beneficial to one partner

and neutral to the other) and mutualistic (beneficial to

both partners). Commensal and mutualistic interactions

are a key to understanding specific coordinated behaviour

such as ungulate migration and feeding successions

(Dickman 1992; Stachowicz 2001). Detrimental and

antagonistic interactions are however more widespread

with a scarcity of empirical evidence for positive species

interactions from mammal communities (Forsman et al.

2002) and decades of research have shown how such

antagonistic interactions shape mammal communities

(e.g. Palomares and Caro 1999; Sinclair et al. 2003;

Ritchie and Johnson 2009). Therefore we will focus on

detrimental and antagonistic interactions here, which

include exploitation and interference competition, harass-

ment, kleptoparasitism, classic and intraguild predation,

and pathogen–host interactions (Palomares and Caro

1999; Caro and Stoner 2003; Arim and Marquet 2004; St-

Pierre et al. 2006; Vanak et al. 2013).

A venue of research leading to a better understanding

of detrimental and antagonistic interactions is the study

of niche partitioning. Niche partitioning reduces the

strength of such interactions and enables sympatry

through adaptations in morphological, physiological or

behavioural traits (Connell 1980; Di Bitetti et al. 2010).

Here, we focus on behavioural niche partitioning. This

type of niche partitioning can be spatial, temporal or spa-

tiotemporal. Spatial niche partitioning includes avoidance

of sites occupied by a competitor or predator or habitat

partitioning along environmental gradients. Two-species

occupancy models are an established method to study

spatial niche partitioning (MacKenzie et al. 2004, 2006;

Richmond et al. 2010). Such models can be used to assess

the level of co-occurrence between species, and whether

detections are influenced by the presence or the detection

of another species. Co-occurrence patterns are, however,

a result of site-level occupancy processes and therefore

only a measure of spatial and not temporal species inter-

actions. Furthermore, sampling occasions in camera-trap

based occupancy surveys are usually at least 1 day long

and thus too long to detect short-term spatiotemporal

avoidance patterns and variations in activity and

detectability throughout 24 h periods. We note, however,

that for very common species shorter occasion lengths are

conceivable.

Niches can also be partitioned temporally or spatiotem-

porally, for example by the adjustment of activity patterns

to avoid interaction with other species, or by temporarily

avoiding sites after the presence of a predator or

competitor (Kronfeld-Schor and Dayan 2003; Apfelbach

et al. 2005; Schuette et al. 2013; Karanth et al. 2017).

Studying temporal or spatiotemporal niche partitioning

in wild populations of medium-sized to larger mammals,

however, is challenging, and it is less clear what the most

suitable methods for studying it are. In this paper, we

explore how such (spatio)temporal niche partitioning can

be inferred from camera trapping data, a widely used and

cost-effective method for wildlife surveys, particularly for

cryptic or rare species.

For the direct assessment of (spatio)temporal interac-

tions, several approaches have been developed and applied.

One approach estimates spatiotemporal avoidance, that is,

to what extent site visitation by species A (the ‘primary’

species, hereafter) influences subsequent visitations by spe-

cies B (the ‘secondary’ species, hereafter, e.g. Harmsen

et al. 2009; Parsons et al. 2016; Karanth et al. 2017). Such

avoidance behaviour can be mediated by olfactory (Apfel-

bach et al. 2005; Ferrero et al. 2011), visual (Blumstein

et al. 2000; Stankowich and Coss 2007) or acoustic cues

(Hauser and Wrangham 1990). The second, more com-

monly used approach assesses temporal segregation

between species. Here, the temporal overlap in activity

between two species is estimated to assess whether daily

activity patterns may have shifted in response to the pres-

ence of the other species (Ridout and Linkie 2009; Linkie

and Ridout 2011; Foster et al. 2013; Lynam et al. 2013;

Ross et al. 2013; Farris et al. 2015; Sunarto et al. 2015).

Often, camera trap stations are pooled for this analysis,

thus omitting spatial information.

Although many methods have been proposed to use

camera trap data for drawing inferences about spa-

tiotemporal avoidance and temporal segregation, the

suitability of these methods for such a purpose has not

been assessed. The aim of this study was therefore to

assess different measures and statistical tests for detecting

spatiotemporal avoidance and temporal segregation. For

this purpose, we simulated species interactions across a

wide range of avoidance and activity patterns, taking

into account the typical structure of camera trap data.

Simulations allowed us to overcome the main obstacle

of field data, the unknown (latent) true state of the

study system that generates the records, by explicitly

specifying the characteristics of the interactions (Peck

2004). We compared tests in terms of their statistical

power and validity of P-values for the most commonly

found daily activity patterns with increasing intensities

(strengths) of avoidance or segregation. Specifically, we

assessed under which circumstances spatiotemporal

avoidance and temporal segregation can be detected,

how many species records are needed for a reliable

detection and which method is the most powerful and

valid of those described.
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Materials and Methods

Outline of the study system

We simulated the interactions of primary species A and a

secondary species B at one camera trap station, but the

findings extend to typical multi-camera studies (see discus-

sion). We assumed that species A is unaffected by the pres-

ence of species B, whereas species B has two possibilities to

avoid an interaction with species A. In spatiotemporal

avoidance, species B avoids a site after species A was

recorded, expressed as a reduced probability of recording

species B after species A was recorded. In this case, we

assumed a subsequent linear recovery of the chance that

species B visits the site (Fig. 1). Alternatively, in the case of

temporal segregation, species B can shift its activity peaks

relative to species A to reduce activity overlap and thus

reduce the chance of encountering species A (Fig. 2).

The activity patterns of both species were chosen to be

uniform (flat), unimodal (with one activity peak per day)

or bimodal (two peaks per day). Uniform activity patterns

are representative of species without a fixed activity

rhythm (cathemeral species). Unimodal and bimodal

activity patterns are more common, the former being

typical of diurnal or nocturnal species, the latter, crepus-

cular species (Ridout and Linkie 2009; Levy et al. 2012;

Foster et al. 2013; Lynam et al. 2013; Monterroso et al.

2013; Ross et al. 2013; Farris et al. 2015; Ikeda et al.

2016). All computations were performed in R 3.3.3 (R

Core Team, 2017), the circular activity patterns were sim-

ulated with functions from the R package circStats v0.2-3

(Lund and Agostinelli 2012). See Supplementary Methods

for a more thorough description of the simulation proce-

dure.

Spatiotemporal avoidance

For each combination of simulation parameters as shown

in Table 1, we generated simulated species records, ter-

med observed data here. The number of records and the

activity patterns were identical for both species; we only

varied the strength and duration of the spatiotemporal

avoidance. Avoidance strength is expressed as an odds

ratio between the odd of detecting B in the absence of A

relative to the odd of detecting B directly after an obser-

vation of A. An odds ratio of 2 stands for mild, 10 for

moderate and 100 for strong avoidance. After an observa-

tion of A the odds ratio linearly recovers to a value of 1

Figure 1. The simulated system of spatiotemporal avoidance. The top row shows the activity density curve for a primary species during 10

simulated survey days. Activity density values are used as probability weights for realising species records in the simulation. Realised records are

shown as red ticks. The bottom row shows how the probability weights for records of a secondary species (dark grey) are reduced after records

of a primary species due to avoidance compared to their original value (light grey). Realised records of the secondary species are shown as blue

ticks. Both species have a diurnal activity pattern.

274 ª 2019 The Authors Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London

Species Interactions from Camera Trapping Data J. Niedballa et al.



(no effect) for an adjustable amount of time (see Supple-

mentary Methods).

Analogous to the common practice for ensuring tem-

poral independence between records in camera trapping

data, we removed records of a species within a period of

60 minutes after the last record of the same species at the

same camera trap (Sollmann et al. 2013; Meek et al.

2014; Burton et al. 2015). We calculated the following

time intervals between detections of the primary species

(A) and the secondary species (B) in the observed data to

assess which is most suitable for detecting spatiotemporal

avoidance: AB, BA, AA, BB, ABA, BAB, and the ratios

AB/BA and BAB/BB. The notation of time intervals repre-

sents the order of the different events. For example, AB is

the time interval between a record of A until the next

record of B, whereas BA is the opposite. AB and BA were

used by Harmsen et al. (2009) and Karanth et al. (2017).

The two ratios correspond to the attraction-avoidance-

ratios (AARs) T2/T1 and T4/T3 in Parsons et al. (2016).

The ratios compare the time intervals between a primary

species and a secondary species to the converse situation

(AB/BA, T2/T1) or the time intervals between records of

secondary species with or without the passage of a pri-

mary species in between (BAB/BB, T4/T3). If a record

was preceded by a sequence of multiple records of the

other species, we calculated the time interval since the last

record of that sequence to the current record.

Linear models

We first directly compared the time intervals AB and BA

(primary–secondary and secondary–primary) by fitting two

linear models using either natural log-transformed or

untransformed time intervals as the response variable. Log-

transformation was applied to meet linear model

assumptions. For both linear models, the only predictor con-

sidered was the type of the time interval (i.e. a factor with

two levels: AB and BA). We used the interval BA as the refer-

ence level in the model, since species A should not be

affected by species B. The linear models thus estimate the

difference between AB and BA (or log(AB) and log(BA)),

with a positive effect indicating avoidance and a negative

effect indicating attraction. The effect size indicates the time

difference between the means of AB and BA (or log(AB) and

log(BA)). The P-value of the parameter estimate from the fit

of the linear model for this difference corresponds to the P-

value obtained in a traditional t-test on the data in this sim-

ple situation of one simulated camera trap station.

We checked whether the main assumptions about errors

in linear models were met, namely homoscedasticity using

the Breusch–Pagan test, independence (absence of serial

autocorrelation) as measured by the Durbin–Watson test,

and normality of model residuals using the Shapiro–Wilk

test (the Shapiro-Wilk test provides both a measure of the

strength of non-normality and of its significance).

Mann–Whitney U-test

Real data, and also our simulated data, are rarely normally

distributed, even after transformation. We therefore also

compared the time intervals AB and BA using the non-para-

metric Mann–Whitney U-test. It is used to test for a differ-

ence in central locations between two independent groups

which come from similar underlying distributions, but does

not require observations to be normally distributed.

Permutation test

Permutation tests are non-parametric tests for statistical

significance in which P-values are calculated by

Figure 2. Temporal segregation. (A) Daily activity density curves of two species with a time shift of 6 hours between activity peaks (noon and

6 pm). These activity density curves are used as probability weights for realising species records in the simulation (see B). (B) Kernel density

estimation of diurnal activity of both species (red and blue) and activity overlap (grey) based on realised records (observed data, shown in the

rug). (C) Kernel density estimations after one possible species label permutation. Note the increased activity overlap compared to the observed

data in B. (D) Overlap coefficient D̂1 from the observed data (red line) compared to distribution of D̂1 under the null hypothesis (generated from

permutation results). In this example, the observed activity overlap is significantly lower than under the null hypothesis, suggesting a significant

time shift of activity peaks between both species.
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comparing a test statistic for the observed data to the dis-

tribution of the test statistic under the null hypothesis

which is obtained by repeatedly and randomly exchanging

labels of data points and recalculating the test statistic

(Rodgers 1999).

Using the observed data of both species, we performed

a permutation test to generate data under the null

hypothesis of no spatiotemporal avoidance. We first cal-

culated the median of the observed time intervals and

ratios mentioned above (AB, BA, AA, BB, ABA, BAB, AB/

BA and BAB/BB). We generated the distributions of these

median time intervals and ratios under the null hypothe-

sis by randomly permuting species labels of the observed

records 1000 times, each time filtering for temporal inde-

pendence (60 min, see above) and recalculating all time

intervals and ratios. We then compared the median

observed time intervals and ratios to the median of these

1000 permutation time intervals and ratios and per-

formed a two-sided significance test (because the permu-

tation values may be higher or lower than those from the

observed data). The P-value for this test is directly

deduced from the distribution of the test statistic:

p ¼ minðq; 1� qÞ � 2;

where q is the quantile of the observed values within the

distribution of the randomized values. Thus, p is equiva-

lent to the percentage of permutation tests whose values

are equal to or more extreme than the observed values.

Random records

We explored random records of the secondary species (B)

as an alternative method to simulate data under the null

hypothesis of no spatiotemporal avoidance between spe-

cies. We did so by assigning random times and dates to

records of secondary species while accounting for their

daily activity patterns. To generate random times of day,

we derived kernel density estimates of the diurnal activity

patterns from the observed data of secondary species using

the R package overlap (Meredith and Ridout 2016), as

one would do to estimate activity patterns from field

data. The kernel density estimates were used to weight

the random draws of 1-min intervals from a 24-h period,

thereby producing random times. These random times

were then combined with randomly selected dates from

the study period of secondary species. We held the num-

ber of random records identical to the number of the

original data points. This procedure was used by Karanth

et al. (2017) without explicitly taking activity patterns

into account, and by Cusack et al. (2017). The newly gen-

erated records of B were again filtered for temporal inde-

pendence (60 min). Records of A were not manipulated.

We then calculated the median of all time intervals

mentioned above for 1000 independent sets of random

records generated in this manner and compared the med-

ian observed values to the distribution of values from the

random records. As in the permutation test above, we

Table 1. Parameters of the R function used for simulating species records.

Function input Details

Spatiotemporal

avoidance Temporal segregation

Number of days Number of simulated days 100, 300 100, 300

Number of records A Number of records of species A 10, 20, . . ., 90, 100 5, 6, 7, 8, 9, 10, 20, 30, 40, 50

Number of records B Number of records of species B 10, 20, . . ., 90, 100 5, 6, 7, 8, 9, 10, 20, 30, 40, 50

activity pattern1/2 Uniform,

unimodal (von Mises) or bimodal

(von Mises mixture)

uniform,

unimodal,

bimodal

unimodal,

bimodal

j (kappa)1/2 j (kappa), concentration parameter

of the von Mises distributions used

for uni- and bimodal activity

patterns

2 1,2,3

Spatiotemporal avoidance strength2 The odds ratio between the odds for

detecting B in the absence of A

relative to the odds for detecting B

after A was recorded

1, 2, 10, 100 1 (no effect)

Spatiotemporal avoidance duration2 Duration for which the effect of A

on B persists until full recovery (in

days)

1, 3 - (no spatiotemporal avoidance)

Activity peak difference2 Time difference between the activity

peaks of A and B (in hours)

- (synchronous activity patterns) unimodal: 1,2,3,. . .,12

bimodal: 1,2,3,. . .,6

1Argument impacts on the probability distribution of the primary species A.
2Argument impacts on the probability distribution of the secondary species B.
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performed a two-sided significance test comparing the

observed test statistic and obtained the P-value with the

same equation.

Temporal segregation

We created records with temporal segregation between

both species (time shifts of activity peaks) ranging from 0

to 12 h for unimodal activity patterns and 0–6 h for

bimodal activity patterns (in 1-h steps). Both species had

the same type of activity pattern (uni or bimodal) and no

spatiotemporal avoidance. The shape of the activity pat-

terns was varied by varying the concentration parameter

j in the von Mises distributions (making them more or

less concentrated, Fig. 4). Table 1 shows the parameters

used in the simulations. The method was applied to sim-

ulated datasets containing between 5 and 50 records per

species with identical number of records for both species.

For the test, we first calculated the coefficient of over-

lap for activity D̂1 (Ridout and Linkie 2009) of the ob-

served data using function overlapEst from the R package

overlap (Meredith and Ridout 2016). D̂1 is the integral

defining the area under the probability density functions

of the estimated daily activity density curves of both spe-

cies (denoted by f̂ tð Þ and ĝ tð ÞÞ:

D̂1 ¼
Z 1

0

min f̂ tð Þ; ĝ tð Þ
n o

dt:

Analogous to the permutation test above, we then ran-

domized species labels of the observed records 1000 times

(or the maximum number of possible permutations for 5

and 6 records) and calculated D̂1 for each of these random-

ized datasets to obtain the distribution of D̂1 under the null

hypothesis of no temporal segregation between species. If

activity peaks differ between both species, we expect the D̂1

values (activity overlap) from the randomized datasets to

be higher than the observed D̂1 (see Fig. 2). The test statis-

tic for this comparison corresponds to the quantile of the

observed bD1 compared to the distribution of 1000 random-

ized bD1 values and was calculated as

p ¼
Pn
i¼1

IðbD1H0i
� bD1obsÞ

nþ 1
;

where bD1H0i
is the bD1 value of the permutation i, bD1obs is

the observed bD1 value, I an indicator function taking

value 1 if the inequality is satisfied and 0 otherwise, and

n is the number of permutations. It is a one-sided test,

and its P-value expresses the chance that the observed

overlap is lower or equal than that expected under the

null hypothesis of no time shift in activity peaks between

both species.

Power analysis

Statistical power is defined as the probability of true posi-

tives, that is, the probability that a test correctly rejects the

null hypothesis when it is false. To assess the power of the

tests, each test was performed on 1000 sets of independently

generated records of both species (observed data) for each

combination of parameter values of the function as detailed

in Table 1. Power was calculated as the percentage of signifi-

cant tests at a = 0.05 out of these 1000 independent tests.

We considered a test as reliable if power was >0.8.

Validity of P-values

Under the null hypothesis, the P-values of a statistical test

are expected to follow a uniform distribution. A deviation

from a uniform distribution suggests that a test will reject

the null hypothesis more (or less) frequently than suggested

by the significance level, leading to biased conclusions. We

assessed the validity of the tests using the empirical cumu-

lative density functions (ECDFs) of P-values from 1000

independent tests with data generated under the null

hypothesis of no interaction, that is, no spatiotemporal

avoidance and no temporal segregation respectively. We

assessed the expected uniform distribution in three comple-

mentary ways, by (1) visually assessing the ECDFs of

P-values, which should follow a straight line, (2) comparing

the distribution of the obtained P-values with a uniform

distribution using a Kolmogorov–Smirnov test, and (3)

computing the value of the ECDFs at a significance level of

a = 0.05, expecting an ECDF value of about 0.05 at

a = 0.05 if the distribution of P-values is uniform. Major

deviations from an expected value of 0.05 would indicate

that the test has a higher (or lower) chance of returning a

false positive result than suggested by the nominal signifi-

cance level, that is, it is not valid.

Results

Spatiotemporal avoidance

Power

All four tests—linear models, Mann–Whitney U-test, per-

mutation test and the test based on randomly generated

records—detected spatiotemporal avoidance of a primary

species by a secondary species (given sufficient records)

and were not affected by the type of activity pattern consid-

ered. For all tests, a higher number of records and stronger

or longer avoidance resulted in higher power (Fig. 3).

Overall, the highest power was achieved with a linear

model comparing log-transformed time intervals AB and

BA, followed by the U-test, the linear model with untrans-

formed data and the comparison of the observed time

ª 2019 The Authors Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London 277

J. Niedballa et al. Species Interactions from Camera Trapping Data



interval AB to those from randomly generated records or the

permutation test (Fig. 3). Under favourable conditions

(strong avoidance, large sample sizes), power can be close to

1. Between the linear models and the U-test, which com-

pared the intervals AB and BA, power was generally similar

in range, but highest when using a linear model on log-

transformed time intervals, intermediate for U-tests, and

lowest in linear models considering untransformed interval

values as the response variable. The power of these three

tests was generally higher than for the permutation test or

for the test based on randomly generated records (Fig. 3).

In both the permutation procedure and the test based

on randomly generated records, the highest power was

achieved when the interval AB was used. The avoidance-

attraction ratio AB/BA achieved the second highest power

followed by time interval ABA. The power of the remain-

ing time intervals was consistently lower across all tests

(Fig. 3). For the time interval AB, the power was slightly

higher when using random records than applying species

label permutation. The same was observed in a more pro-

nounced way for the time interval ABA, whereas for the

ratio AB/BA, the test using species label permutation

achieved a slightly higher power (Fig. 3).

For all statistical tests and even with the time interval

with the highest power, reliable test results (power > 0.8)

required high numbers of records and strong avoidance

effects (>50 records per species, odds ratios ≥10, see Sup-

plementary Methods). Below 50 records per species,

power dropped sharply, and even very strong avoidance

effects could not be detected reliably, with power at or

below 0.5 for 40 records and approximately 0.25 for 30

records (Fig. 3). The minimum number of records to reli-

ably detect spatiotemporal avoidance was lower if the

avoidance effect lasted longer relative to the survey

Figure 3. Statistical power of four methods for detecting spatiotemporal avoidance in camera trapping data (linear models, Mann–Whitney U-

test, a species label permutation test and randomly created records) based on simulated data of a primary species A and a secondary species B.

Data shown are for 100 simulated survey days, and the detection probability of the secondary species takes 1 day to recover to its original level

after records of the primary species. This plot shows data from unimodal activity patterns, but it is essentially the same for uniform and bimodal

activity. The four columns in which plots are arranged show the avoidance strengths with 1 being no avoidance and 100 being very strong

avoidance. ‘measure’ refers to the statistical method or time interval used (e.g., AB = time interval between primary and secondary species, see

the methods section). Generally, statistical power increases as avoidance strength and sample size increase, and linear models comparing the time

intervals AB and BA were the most powerful method for detecting spatiotemporal avoidance.
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duration. If avoidance was subtle (odds ratio = 2), even

100 records per species were insufficient to reliably detect

spatiotemporal avoidance.

Validity of P-values

All tests were valid for all types of activity patterns and

all factor combinations tested. The ECDFs of P-values

under the null hypothesis were linear; there was no evi-

dence for systematic deviations from a uniform distribu-

tion (Supplementary Figs. S1 and S2); and around 5% of

tests were significant when the threshold for significance

was set at 5% (Supplementary Figs. S1 and S2). In the

linear models, P-values were distributed uniformly under

the null hypothesis (i.e. in the absence of interaction

effects) despite frequent significant deviations from the

assumptions of normality and homoscedasticity. While

significant deviations from homoscedasticity were

common, the values of the test statistic of the Breusch–
Pagan test indicated only limited heteroscedasticity under

the null hypothesis. However, heteroscedasticity became

substantial when spatiotemporal avoidance was set to be

strong (odds ratio = 10 or 100), particularly when the

number of records was high. This pattern was usually

more pronounced when data were log-transformed and

most severe for unimodal activity patterns. We also found

frequent significant deviation from normality, particularly

when the number of data points (records) was high. Nev-

ertheless, the values of the test statistic of the Shapiro–
Wilk test were consistently close to 1, indicating that the

deviation from normality was usually not substantial even

if they were statistically significant. Log-transformation

resulted in values of the Shapiro–Wilk test statistic closer

to 1, thus decreasing deviations from normality compared

to untransformed data. There was no evidence for system-

atic autocorrelation.

Temporal segregation

Power

The power of a species label permutation test to detect

temporal segregation between species varied considerably. It

increased when activity peaks became narrower, as the

number of records grew and as the magnitude of the time

shift between activity peaks became more pronounced. For

a given number of records, power was higher if species had

unimodal rather than bimodal activity patterns (Fig. 4).

The conditions under which power was high (i.e. >0.8)
therefore depended on the type of activity patterns, the

extent of temporal segregation and sample size. For nar-

row unimodal activity patterns (concentration parameter

j = 3), even small time differences between activity peaks

of 2 hours could be reliably detected, provided sample

size was sufficient (40 or more records). Differences in

activity peaks of 5 h and more were reliably detected with

<10 records (j ≥ 2). On the other hand, it was impossi-

ble to reliably detect even considerable temporal segrega-

tion in large numbers of records with relatively modest

bimodal activity (j = 1). Similar to unimodal activity

patterns, power approached 1 for more pronounced

bimodal activity patterns (j = 3) with higher numbers of

records and shifts of activity peaks by 3 h or more

(Fig. 4).

Validity of P-values

Species label permutation tests for differences in activity

peaks of species were valid for all parameter combinations

with at least seven records for each species. Below this

minimum, the observed chance of obtaining false posi-

tives with a of 0.05 was 20–30% (see Supplementary

Fig. S3), demonstrating that the tests were not valid in

this situation.

Discussion

We developed a flexible simulation framework and inves-

tigated the validity and statistical power of several statisti-

cal methods to detect two types of species interactions

from camera trapping data – four methods to assess spa-

tiotemporal avoidance and one method to assess temporal

segregation (shifts in activity patterns). These five statisti-

cal methods were generally valid, powerful and capable of

detecting both types of interactions between species irre-

spective of species activity patterns. However, the extent

to which they provided sufficient statistical power (>0.8)
depended on several factors, primarily sample size and

avoidance strength.

Our results showed that spatiotemporal avoidance can

be detected if avoidance is sufficiently strong (odds

ratio ≥ 10), if the recovery of the detection probability of

the secondary species takes sufficiently long (≥1 day), and

if sample size is sufficiently large (>50 records per spe-

cies). However, if avoidance was weak (i.e. a slight

decrease in detection probability of the secondary species

after records of a primary species, odds ratio = 2) or very

short-term (e.g. in a range of hours rather than days),

avoidance cannot be reliably detected even with a high

number of records (e.g. 100 records).

The most powerful method for detecting spatiotempo-

ral avoidance behaviour was the linear model comparing

the time intervals between the primary species A and sec-

ondary species B, and vice versa (time intervals AB and

BA). Harmsen et al. (2009) used a similar linear mod-

elling approach and found evidence of spatiotemporal
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avoidance between jaguars and pumas in a neotropical

forest. Even though assumptions of linear models were

not always met in the simulated data, the power and

validity of P-values were not negatively affected by the

small departures from normality and homoscedasticity we

observed and did not pose a serious problem for this type

of application. The non-parametric Mann–Whitney U-test

provides an alternative method for robust detection of

spatiotemporal avoidance behaviour with more substan-

tial deviations from these assumptions with only slightly

lower power (Adams and Anthony 1996). In the permuta-

tion test and the test based on randomly generated

records for detecting spatiotemporal avoidance behaviour,

our simulations showed that the preferred time interval is

the time elapsed between the presence of the primary and

the secondary species (AB). Karanth et al. (2017), using a

similar test based on randomly generated records, com-

pared times intervals between co-occurring species

(times-to-encounters, akin to AB here) from observed

data and random records and found some evidence for

spatiotemporal interactions between dholes, leopards and

tigers in Indian wildlife reserves.

For the reliable detection of shifts in activity peaks of a

few hours between species with unimodal activity patterns

(temporal segregation), a minimum of 20 records per

species was usually required. The minimum number of

records for detecting smaller shifts of 2-3 h, or in the case

of bimodal activity patterns, is more likely to be around

50 records per species. Power strongly depends on the

shape of the underlying density distribution of the detec-

tion probability and the actual activity shift. Thus, in

some cases subtle shifts in activity peaks of 1–2 h might

go unnoticed even with large numbers of records unless

activity peaks are very narrow (narrower than simulated

in this study). These are statistical perspectives. To what

extent subtle spatiotemporal avoidance or temporal

Figure 4. (A) Statistical power of a species label permutation test for detecting temporal segregation (differences in activity peaks) for unimodal

and bimodal activity patterns with different concentration parameters j and activity peak differences (0–12 h for unimodal activity and 0–6 h for

bimodal activity). Power of tests for 5 and 6 records of each species are not shown due to lacking validity of P-values. (B) The underlying diurnal

probability distributions for species detections. In unimodal distributions, 95% of activity density lies approximately between µ � 10 h (e.g. 2 AM–

10 PM for µ = 12 noon) for j = 1, between µ � 7 h (5 AM–7 PM) for j = 2 and between µ � 5 h (7 AM–5 PM) for j = 3. Statistical power for

detecting temporal segregation increases as the activity peak differences and sample sizes increase, and as activity peaks become narrower.
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segregation matters from a biological point of view

depends on the research question. The test for shifts in

activity peaks assumes activity patterns of comparable

shape. Therefore, it is important to identify the likely

activity density function for both species before conduct-

ing the test, as differences in the underlying activity den-

sity functions between species (e.g. one having a

unimodal and the other a bimodal activity pattern) may

also produce significant but misleading results.

Statistical tests with low numbers of records generally

have low power, thus impeding the detection of spa-

tiotemporal avoidance or temporal segregation when it is

present. For the sake of simplicity, we generated equal

numbers of records for both species in all tests, but

actual data are rarely balanced. If the number of records

differs between species, the number of available time

intervals for analyses of spatiotemporal avoidance is dic-

tated by the smaller of the two samples and statistical

power is reduced accordingly. In addition, when calculat-

ing activity densities (for the creation of random records

or the computation of activity overlaps for temporal seg-

regation analyses), low numbers of records give a dispro-

portionate weight to individual records and can prevent

the correct inference of actual activity patterns. As a con-

sequence, activity densities estimated from low numbers

of records do not necessarily provide an adequate repre-

sentation of the underlying distribution. Previous camera

trapping studies are generally aware of this limitation

and used from 10 to well-over 1000 records for estimat-

ing activity densities (Lynam et al. 2013; Ross et al. 2013;

Farris et al. 2015).

Our simulation function makes a number of assump-

tions and simplifies complex real-world species interac-

tions. Realism could be increased in a number of ways. In

simulating spatiotemporal avoidance, we assumed detec-

tion probabilities of the secondary species to recover lin-

early after the presence of the primary species. Simulating

the mechanism of spatiotemporal avoidance via ‘forget-

ting’ functions (e.g. an exponential decay of the perceived

threat) could increase realism but would introduce a (as-

sumed or estimated) decay constant as an additional sim-

ulation parameter (White 2001). In addition, the

assumption that the primary species remains unaffected

by the presence of the secondary species may be unrealis-

tic in some situations, for example when predators

actively follow prey (Hughes et al. 2010). Since interac-

tions between species can be expressed as time-to-event

data, other statistical approaches such as statistical tests

traditionally used in survival analyses (e.g. semi-para-

metric Cox regressions) may be investigated.

Another extension would be the incorporation of the

manifold sources of uncertainty found in real-world data

which we omitted from the current study, particularly the

issue of imperfect detection (MacKenzie et al. 2004).

Imperfect detection is likely to reduce the power of tests

for spatiotemporal avoidance, as it alters the distribution

of time intervals between records (by increasing both the

mean and the variance of time intervals) and reduces

sample size. Thus, a potential extension of the presented

simulation framework would be to mimic imperfect

detection by randomly removing records of both species

from simulated data. Then, one would have to assess the

quality of the tests as a function of the proportion of

such omitted records. For the test for temporal segrega-

tion, however, we predict that imperfect detection should

not affect the outcome, provided there are sufficient

records and that detection probabilities of both species

are constant throughout the day.

The various methods we examined for investigating

spatiotemporal avoidance and temporal segregation are

based on time and location of species records exclusively

and thereby cannot distinguish between the ecological

mechanisms underlying the observed patterns. The

observed patterns could be the result interactions, or they

may reflect other aspects of the species’ ecology, such as

differences in physiological adjustments to fluctuating

ambient environmental conditions (Haim and Fourie

1980; Fuller et al. 2010). Interspecific interactions are

complex, and species have a wide array of behavioural

responses at their disposal to avoid interactions, for

example by partitioning space or resources instead of

time. Thus, even if no evidence for temporal segregation

is found, this does not necessarily indicate the absence of

avoidance in other dimensions. Conversely, a significant

permutation test for temporal segregation does not

necessarily indicate avoidance between two species. The

behaviour of a species may not necessarily depend on that

of the other species but could also respond to any

other coincidental factor, including the activity of a third

species.

The presence of other species besides the two focal spe-

cies may introduce further complexities (Morales-Castilla

et al. 2015), and detecting other species in between

records of the focal species could indicate the presence of

other relevant interactions. Removing time intervals dur-

ing which a third species was present between subsequent

detections of the focal species before analysing the data

(as in Parsons et al. 2016) may partly alleviate this prob-

lem at the cost of reduced sample size and thus, power.

Removing these time intervals, however, would not be

sufficient if occupancy by a third species changes activity

patterns of one of the study species (e.g. Ross et al.

2013). In this situation, the third species may introduce

spurious relationships between focal species that in reality

is caused by interactions with the third species. Including

a third species in the analyses presented here would be
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possible in theory, but substantially increases the number

of necessary comparisons and thus the data requirements

to reach a given power. It is also likely to complicate the

interpretation of findings. An alternative to this procedure

may be a functional, trait-based approach which treats

records of different species from the same guild or other

species grouping (such as ‘medium-sized felids’, or ‘small

carnivores’) as ‘one species’ (group) at the cost of

reduced ecological (or taxonomic) resolution.

In order to obtain unambiguous results, we simulated

data for a simple system of a single camera trap station

without spatial variation in the ability to detect interac-

tions. Therefore, another key perspective would be to

upgrade our framework for data originating from several

camera traps. All methods we present here can easily be

expanded to a camera trapping grid consisting of several

cameras, as will be found in almost all field camera trap-

ping studies. If all camera trap stations are considered

equivalent with respect to avoidance, information can be

pooled across stations and sample sizes and power given

here refer to detections across the entire camera grid. For

linear models, the consideration of several camera traps

could also be done using additional predictors or linear

mixed-effects models, that is, by considering the location

of the camera trap station as an additional fixed or ran-

dom effect. This way, a linear model which compares the

(log-transformed) time intervals AB and BA could also

investigate geographical differences in interval times which

may be caused by variation in local abundance. Linear

models have the additional advantage that other factors of

interest (or nuisance factors) potentially affecting the

interaction between species, such as habitat characteristics,

could also be included. If the violations of linear model

assumptions are severe, non-parametric U-tests could be

performed and the P-values of U-tests from individual sta-

tions be combined using Fisher’s method to test the global

null hypothesis of no avoidance (Fisher 1932) at the cost

of reduced power. Alternatively, appropriate robust non-

parametric statistical equivalents of linear models could be

investigated (e.g., Kloke and McKean 2015). Similarly, for

both the random record method and the permutation test

for spatiotemporal avoidance, the P-values from tests at

each station can be aggregated using Fisher’s method. The

species label permutation test can only be applied if the

numbers of records at each station is high enough to

ensure a sufficient number of possible permutations and

avoid the problems with the validity of P-values shown

above. When using randomly generated records to detect

spatiotemporal avoidance, pooling records from different

stations can give a more accurate reflection of species’

general activity patterns, thus providing more realistic ran-

domly generated records, provided activity is constant

between stations.

Analyses of activity overlap are commonly performed

on data pooled across camera trap stations, omitting the

spatial information and implying that activity patterns are

constant between stations. All stations can then be jointly

analysed in one permutation test. If activity patterns are

assumed to differ between stations, for example because

of prior information or hypotheses about ecological pro-

cesses at the stations, independent permutation tests can

be run on different (sets of) stations. Fisher’s method can

also be applied here if multiple permutation tests are per-

formed, for example on different subsets of camera trap

stations. Pooling data from many stations or over

extended periods of time will, however, induce an

increase in observed activity overlap as an artefact of

pooling (Nouvellet et al. 2012).

In conclusion, the simulation approach we presented

provides a flexible, extensible framework for the develop-

ment and testing of statistical methods for detecting spe-

cies interactions in camera trapping data under well-

defined conditions. Our results provide guidance to field

researchers exploring two-species spatio–temporal interac-

tions as to when their data are likely to be of sufficient

quality to test spatiotemporal avoidance and temporal

segregation, and how such tests could be implemented.

The tests for spatiotemporal avoidance can be conducted

if researchers hypothesize that a species temporarily

avoids sites after the presence of another species, but it

requires relatively large sample sizes. The test for temporal

segregation requires less data and can be applied to test

whether there is a shift in activity patterns between two

species. We suggest that researchers use similar

approaches or expand the provided simulation framework

to test the power and validity of interaction tests in their

specific circumstances (expected survey duration, sample

sizes, various interaction scenarios). Irrespective of the

type of analysis, our simulation study showed that in

order to detect spatiotemporal interactions, numbers of

records need to be high and may have to exceed a num-

ber of 100 per species and more. It is consequently most

feasible for common species that are captured frequently

by camera traps. As understanding species interactions is

a key topic in ecology, our results support calls to stan-

dardize data collection schemes and combine camera trap

datasets from different studies in joint analyses (Forrester

et al. 2016; Steenweg et al. 2017).
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Figure S1. Empirical cumulative density functions

(ECDFs) of P-values for linear models and U-test for spa-

tiotemporal avoidance between species in camera trapping

data. lm = linear models, lm(log) = linear models with

log-transformed time intervals. Data shown are for uni-

form activity patterns. Data for uniform and bimodal

activity patterns are almost identical.

Figure S2. ECDFs of P-values for the random record

method and the permutation test for spatiotemporal

avoidance between species in camera trapping data. Data

shown are for uniform activity patterns. Data for uniform

and bimodal activity patterns are almost identical.

Figure S3. ECDFs of P-values for the permutation test for

temporal segregation between species in camera trapping

data. Data shown are for uniform activity patterns.

Methods S1. Description of the R function for simulating

records of two interacting species at camera trap stations.

Data S1. R function for simulating records of two inter-

acting species at camera trap stations.
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