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Adaptive responses of animals to climate
change are most likely insufficient
Viktoriia Radchuk et al.#

Biological responses to climate change have been widely documented across taxa and

regions, but it remains unclear whether species are maintaining a good match between

phenotype and environment, i.e. whether observed trait changes are adaptive. Here we

reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant pub-

lications, to assess quantitatively whether phenotypic trait changes associated with climate

change are adaptive in animals. A meta-analysis focussing on birds, the taxon best repre-

sented in our dataset, suggests that global warming has not systematically affected mor-

phological traits, but has advanced phenological traits. We demonstrate that these advances

are adaptive for some species, but imperfect as evidenced by the observed consistent

selection for earlier timing. Application of a theoretical model indicates that the evolutionary

load imposed by incomplete adaptive responses to ongoing climate change may already be

threatening the persistence of species.
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C limate change can reduce the viability of species and
associated biodiversity loss can impact ecosystem func-
tions and services1–3. Fitness losses (i.e. reductions in

survival or reproductive rates) can be mitigated, however, if
populations respond adaptively by undergoing morphological,
physiological or behavioural changes that maintain an adequate
match—or at least reduce the extent of mismatch—between
phenotype and environment. Such adaptive phenotypic changes
—which we call ‘adaptive response’ (to climate change)—come
about via phenotypic plasticity, microevolution or a combination
of both, and can occur in tandem with geographic range shifts4–6.
Quantifying adaptive responses, or demonstrating their absence
despite directional selection, is important in a biodiversity con-
servation context for predicting species’ abundances or
distributions4,5 and for mitigating the effects of climate change on
biodiversity by developing strategies tailored to species’ ecolo-
gies4–6.

Longitudinal studies of wild populations provide the oppor-
tunity to determine whether phenotypic changes are adaptive (e.g.
refs. 7–9). A phenotypic change qualifies as an adaptive response
to climate change if three conditions are met: (1) a climatic factor
changes over time, (2) this climatic factor affects a phenotypic
trait of a species and (3) the corresponding trait change confers

fitness benefits (Fig. 1)10,11. These conditions are usually assessed
in isolation11–14 (but see, for example, refs. 7,8) and hence most
studies can only speculate on whether adaptive responses have
occurred. Here, we extracted data from many published studies to
assess these three conditions in free-living animals and thus
determine whether the observed phenotypic changes are adaptive.

Multiple studies report data satisfying the first two conditions.
In particular, increases in temperatures across multiple locations
during recent decades are well documented (i.e. global warm-
ing15). Similarly, the effects of climate change on several traits are
well characterized. For example, the timing of biological events,
such as reproduction or migration (hereafter ‘phenological
traits’), has generally advanced across multiple taxa and
locations13,16–18. ‘Morphological traits’, such as body size or
mass, have also responded to climate change, but show no general
systematic pattern8,14,19,20.

A substantial challenge to test the third condition is that the
data must be collected over multiple generations in single
populations. Existing datasets assembling data on either trait
variation21–23 or selection24–26 across taxa, although valuable, are
not well suited for testing whether phenotypic trait changes are
adaptive, because these two types of datasets rarely overlap in
terms of species, traits, study location and study period. Recently,
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Fig. 1 A framework for inferring phenotypic adaptive responses using three conditions. a General framework. Arrows indicate hypothesized causal
relationships, with dashed arrow indicating that we accounted for the effects associated with years when assessing the effect of climate on traits. b–f
demonstrate steps of the framework using as an example one study from our dataset—Wilson et al.69. b Condition 1 is assessed by βClim, the slope of a
climatic variable on years, c Condition 2 is assessed by βTrait, the slope of the mean population trait values on climate. d Interim step: assessing the linear
selection differentials (β). Note that each dot here represents an individual measurement in the respective year and not a population mean; analyses of
selection were not performed here but in original publications, except for a few studies, thus inset d is a conceptual depiction and not based on real data.
e To assess condition 3, first the weighted mean annual selection differential (WMSD) is estimated. f Condition 3 is then assessed by checking whether
selection occurs in the same direction as the trait change over time, calculated as the product of the slopes from conditions 1 and 2. Red lines and font in
b–f illustrate the predictions from model fits. Grey lines and font illustrate the lack of effect in each condition. As an example, if temperature increased over
years (as shown by the red line in b), phenology advanced (depicted by the red line in c) and WMSD was negative (as depicted by the red line in e), then
fitness benefits are associated with phenological advancement, reflecting an adaptive response (point falls in quadrant 3 in f). Source data are provided as a
Source Data file
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Siepielski et al.27 assembled a global dataset combining climatic
factors and selection in species and showed that precipitation,
rather than temperature, explained most of the variation in
selection. However, neither their analysis nor a follow-up study28

assessed whether phenotypic responses to climate (PRC) were
adaptive because the assembled dataset does not contain data on
trait changes.

We conducted a systematic literature search to assemble the
necessary data to assess whether trait changes in response to
climate change are adaptive across animal species worldwide. We
mainly investigated the phenotypic responses of birds, because
complete data on other taxa were scarce. We demonstrate that
advancement of phenology is adaptive in some bird species, but
this response is not universal. Further, modelling suggests that
even bird species responding adaptively to climate change may
adapt too slowly to be able to persist in the longer term.

Results
Systematic literature search. Our literature search focused on
studies that investigated how change in temperature, precipitation
or both affects morphological or phenological traits in arachnids,
insects, amphibians, reptiles, birds or mammals. To assess all
three conditions necessary for inferring adaptive responses to
climate change (Fig. 1), we selected publications reporting the
following data from natural populations during at least 6 years:
(1) annual values of a climatic variable, (2) annual mean values
(+SE) of a phenotypic trait at the population level and (3) annual
linear selection differentials measured on the trait(s). Annual
linear selection differentials were measured as the slope of relative
fitness on standardized trait values29 (Methods, Fig. 1d) and
reported for at least one of the three fitness components: adult
survival, reproduction (measured as number of offspring) or
recruitment (measured as number of offspring contributing to the
population size the following year).

A search on Web of Knowledge (Methods) returned 10,090
publications, of which 58 were retained. These publications
reported data on 4835 studies (representing 1413 non-aquatic
species in 23 countries) that contained information on pheno-
typic responses to climate change. Out of these 4835 studies, a
subset of 71 studies (representing 17 species in 13 countries)
contained all the information required to assess whether
responses were adaptive (including selection differentials, Meth-
ods). We stored information on the 4835 studies in the ‘PRC’
dataset, and information on the subset of the 71 studies in the
‘PRC with Selection data’ (PRCS) dataset. We used the PRC
dataset to assess how representative the PRCS subset was with
regard to (1) the observed change in climatic factors over time,
and (2) the change in phenotypic traits in response to climatic
factors. We define a ‘study’ as a dataset satisfying our selection
criteria for a unique combination of a species, location, climatic
factor, phenotypic trait and fitness component. We had more
studies than publications because some publications reported data
for several species, several climatic factors and/or several
phenotypic traits.

Structure of PRC and PRCS datasets. The studies in both
datasets were predominantly conducted in the Northern Hemi-
sphere (Supplementary Fig. 1). The PRC dataset was heavily
biased towards arthropods (88% of studies), with other taxa
constituting only a small proportion of the studied species
(Supplementary Fig. 2). In contrast, the PRCS dataset was heavily
biased towards birds (95%). We found no studies for insects and
amphibians that reported annual selection data and satisfied all
other inclusion criteria. Among the climatic variables used,
temperature dominated both datasets (>70%, Supplementary

Fig. 2); therefore, we focused on the effects of temperature
changes in the main text and provide results for precipitation in
Supplementary Fig. 3 and Supplementary Note 1. The majority of
studies focused on phenological (rather than morphological)
traits, with this bias being less pronounced for the PRCS dataset.
The median duration of a study was 29 years in the PRCS dataset
and 24 years in the PRC dataset (Supplementary Fig. 4).

Adaptive responses to global warming. We generally expected
that warming temperatures would be associated with an advance
in phenological events, because most studies on phenology in our
PRC dataset represented early season (spring) events in the
Northern Hemisphere, and such events were previously shown to
mainly advance with warming temperatures30,31. We defined a
trait change to be adaptive in response to climate if the climate-
driven change in phenotype occurred in the same direction as
linear selection. For example, with an increase in temperature
over the years, breeding time occurs progressively earlier, with
earlier breeding conferring higher fitness (Fig. 1). In contrast, if
the trait changed in the direction opposite to selection (e.g. later
breeding, despite earlier breeding being favoured), then the
response was considered maladaptive11. The detected adaptive
responses might be due to microevolution, phenotypic plasticity
or both. As we used selection differentials that were measured at
the phenotypic level, we could not differentiate among these
sources.

We conducted separate analyses for PRCS and PRC datasets
and, within each of them, for temperature and precipitation. We
first quantified the three conditions necessary to infer adaptive
responses for each study (Fig. 1). We assessed condition 1
(change in climate over years) with ‘model 1’. This linear mixed-
effects model predicted the annual values of the climatic variable
using the year (modelled as a quantitative variable), thereby
estimating the slope of climate on years for each study (Fig. 1b).
We assessed condition 2 (change of phenotypic traits with the
climatic variable) with ‘model 2’. This linear mixed-effects model
predicted the mean annual standardized population trait values
using the climatic variable (temperature or precipitation,
modelled as a quantitative variable), thereby estimating the slope
of traits on climate for each study (Fig. 1c). This model also
included year as a quantitative variable to account for effects of
years on phenotypic traits not mediated by climate. We assessed
condition 3 (climate-driven trait changes are associated with
fitness benefits) in a two-step procedure. First, we fitted ‘model
3’—a linear mixed-effects model that predicted the annual linear
selection differentials (weighted by the inverse of their variances)
with an intercept, thereby estimating the weighted mean of
annual selection differentials (WMSDs) for each study (Fig. 1e,
see Methods for details). Second, we plotted the obtained WMSD
as a function of the climate-driven trait change over time,
calculated as the product of the slopes from conditions 1 and 2,
that is, by βclim times βTrait (Fig. 1f). In this framework, a trait
change qualifies as an adaptive response if both WMSD and the
trait change over time have the same sign. If their signs differ,
then the trait change is maladaptive. We also refitted model 3
using year as a fixed-effect (quantitative) predictor to assess a
potential directional change in selection over years (Methods).

Since the measures of phenological responses are sensitive to
methodological biases30, in particular to temporal trends in
species abundance32, we also refitted an extended version of
model 2 by additionally including abundance both as a fixed-
effect explanatory variable and as an explanatory variable for
residual variance (Methods). This model was fitted to a subset of
studies for which we could extract abundance data. In all models,
we accounted for first-order temporal autocorrelation (if this
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increased the predictive power of the fitted model), and thus also
considered year (modelled as a qualitative variable) as a random
effect.

We then performed three meta-analyses to obtain (1) the
average slope of climate on years across studies, (2) the average
slope of traits on climate across studies and (3) the WMSD across
studies. The purpose of these meta-analyses is to provide such
average values while accounting for the uncertainty associated
with each estimate and for the heterogeneity stemming from
variation in study design. All three meta-analyses were performed
using mixed-effects models (Methods). We also refitted these
models to assess whether the relationships found depended on
taxon, type of morphological measure, type of phenological
measure, endothermy, fitness component used to measure
selection and generation length (Methods). Finally, we compared
the proportion of studies showing adaptive responses (i.e. the
same sign of WMSD and climate-driven trait change over time)
to the proportion of studies showing maladaptive responses (i.e.
WMSD and trait change over time differ in their sign) with a
binomial test (Methods). We also performed a meta-analysis of
the product between WMSD and the sign of the climate-driven
trait change over time using a mixed-effects model (Methods).

In line with the recent global temperature increase33,
temperature increased across studies by 0.040 ± 0.007 °C (mean
± SE) per year according to the PRCS dataset (likelihood ratio test
[LRT] between the model with and without change in

temperature over years: χ2= 20.4, df= 1, p < 0.001), and by
0.043 ± 0.005 °C per year according to the PRC dataset (χ2= 41.0,
df= 1, p < 0.001) (Fig. 2). These rates are slightly higher than
those observed in recent meta-analyses that, similarly to our
study, are biased toward data from northern latitudes (range
0.03–0.05 °C per year17,31). A possible explanation for this
discrepancy is that warming rates are higher in recent time series
such as ours (Supplementary Fig. 5, median first year in the PRCS
dataset= 1980, and median study duration= 29 years)31,34.

Consistent with previous work13,16,17, phenology advanced
with increasing temperatures at a rate of −0.260 ± 0.069 standard
deviations in the focal trait per degree Celsius (SD per °C)
according to the PRCS dataset (LRT between the model with and
without change in phenology: χ2= 11.2, df= 1, p < 0.001) and at
a rate of −0.248 ± 0.037 SD per °C according to the PRC dataset
(χ2= 22.9, df= 1, p < 0.001). In the PRC dataset, the phenological
response to temperature varied among taxa (Fig. 3, LRT between
the model with and without taxon as a predictor: χ2= 133.5, df=
5, p < 0.001), with the strongest phenological advancement found
in amphibians, followed by insects and birds (Supplementary
Data 1). This finding is in line with previous research showing
that amphibians advanced their phenology faster than other
taxa13,16. In contrast to Cohen et al.17, we did not find significant
variation in phenological responses among different types of traits
(categorized as arrival, breeding and development), either in the
PRCS dataset (Supplementary Data 2, LRT between the model
with and without the trait type as a predictor: χ2= 0.5, df= 2,
p= 0.775) or in the PRC dataset (LRT: χ2= 0.4, df= 2, p=
0.809). Our findings of advancing phenology with warming
temperatures were qualitatively unaffected by including abun-
dance, and, although abundance did affect phenological
responses, the effects of temperature on phenology were generally
larger than those of abundance (Supplementary Fig. 6).

Morphological traits were not associated with temperature in
the PRCS (rate of change: 0.060 ± 0.078 SD per °C; LRT: χ2= 0.6,
df= 1, p= 0.443) and only marginally associated with tempera-
ture in the PRC dataset (rate of change: −0.053 ± 0.029 SD per °C;
LRT: χ2= 3.3, df= 1, p= 0.068). Neither endothermy nor type of
morphological measure (skeletal vs. body mass) moderated the
relationship between morphological traits and temperature
(Supplementary Data 2). Our analyses indicated, however, that
taxa may moderate the effect of temperature on morphology in
the PRC dataset (LRT: χ2= 4.5, df= 1, p= 0.11, Supplementary
Data 2), with negative associations on average observed in
mammals, and no strong association found in birds (Fig. 3).

Across studies, we found a negative WMSD (=−0.159 ± 0.061
SD−1) for phenological traits (LRT between the model assuming
WMSD is non-zero and the one assuming it equals zero: χ2= 6.1,
df= 1, p= 0.014), reflecting higher fitness for earlier-occurring
biological events. We also found an indication of the variation in
the strength of selection among fitness components (LRT between
the model with and without fitness component as a predictor: χ2

= 5.8, df= 2, p= 0.055), with the most negative selection acting
via recruitment (Fig. 4). We did not find a significant relationship
between annual linear selection differentials and years across
studies (LRT for phenological traits: χ2= 0.1, df= 1, p= 0.764;
LRT for morphological traits: χ2= 0.5, df= 1, p= 0.497,
Supplementary Fig. 7). Contrary to selection on phenology,
WMSD for morphological traits on average did not differ
significantly from zero across studies (WMSD= 0.044 ± 0.043
SD−1; LRT: χ2= 1.2, df= 1, p= 0.268). We thus did not
investigate temporal changes in selection for this trait category.

For phenological traits, negative selection favouring the
observed advancing phenology in the context of warming
temperature suggests adaptive responses. Accordingly, in 23 out
of 38 studies, phenology advanced over time as temperatures
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increased, and at the same time negative selection was acting on
phenology (studies in quadrant III of Fig. 5a), suggesting adaptive
responses. A binomial test revealed a tendency for phenological
responses to be more frequently adaptive than maladaptive (mean
proportion of studies with adaptive responses= 0.66, p= 0.07,
Fig. 5). The meta-analysis confirmed the direction of this effect
(product of WMSD with the sign of the climate-driven trait
change= 0.091 ± 0.068), although not reaching significance
(Supplementary Fig. 8, LRT: χ2= 1.9, df= 1, p= 0.17), likely
due to high heterogeneity among studies (Higgins I2, i.e. the
proportion of total heterogeneity due to between-study variation
was 0.999). For morphological traits, which have not changed
much over time in response to climate, the proportion of adaptive
and maladaptive responses did not differ (Fig. 5, binomial test,
mean proportion of studies with adaptive responses= 0.5, p= 1).

Implications for population persistence. To assess the impli-
cations for population persistence of selection acting on

phenology across studies, we used the ‘moving optimum’ model
of Bürger and Lynch35. This model, which assumes an optimum
phenotype that changes linearly over time due to environmental
change, predicts that the lag between the actual population
mean phenotype and the optimum should eventually become
constant if the population tracks the moving optimum via
microevolution (subsequent extensions allowed for phenotypic
plasticity, e.g. ref. 36). This prediction seems valid in our
populations since (1) climatic changes are well approximated by
a linear trend (Fig. 2) and (2) selection is non-zero and constant
over time across studies, as indicated by the lack of a temporal
trend in annual linear selection differentials. The Bürger and
Lynch35 model can be used to assess the critical lag behind the
optimum, which represents the situation where the population
just replaces itself (population growth rate λ= 1). Comparing
the actual to the critical lag provides insight into the expected
persistence of populations: if the actual lag is greater than the
critical lag, then the population growth rate is lower than 1,
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meaning substantial extinction risk; otherwise, the populations
are assumed to have a negligible extinction risk. The estimation
of both the actual and critical lags requires several parameter
estimates, which we could not retrieve from the publications
behind our data (Methods). However, our numerical analysis of
a large parameter space shows that the difference between the
actual and critical lags is mostly influenced by two parameters:
β, the strength of directional selection, for which we used the
absolute values of our WMSD estimates for each study, and ω2,
the width of the fitness function, for which we did not have
study-specific estimates (Fig. 6a–f). We thus applied the Bürger
and Lynch35 model using ω2 values published for other spe-
cies37 together with the study-specific β estimates (absolute
values of WMSD) and showed that for the populations of 9 out
of 13 study species, the actual lag exceeds the critical lag when
large values of ω2 are considered (Fig. 6g). Moreover, the

probability that none of the study species is at risk (λ < 1) is
virtually zero (Supplementary Fig. 9).

Discussion
To date, the majority of global multi-species studies assessing
animal responses to climate change have focused on changes in
distribution ranges3,38,39, whereas phenotypic responses and the
extent to which they may be adaptive remain little studied40.
Moreover, models commonly used to predict species distributions
and population viability under climate change usually do not
incorporate the potential for species to adapt, often because
appropriate data are unavailable to parameterize process-based
models5,41,42. Our study thus makes an important contribution
by focusing on the temporal dimension of species responses to
changing environments. We demonstrate that some bird species
analysed here seem to respond to warming temperatures by
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Fig. 4Weighted mean of annual selection differentials (WMSDs) for each study. WMSD is shown for phenological (black) and morphological (grey) traits.
Each study is identified by the publication identity, the trait, the species and the fitness component. Studies are sorted by trait category (phenological:
black; morphological: grey), and within it by species, fitness category and publication identity. Repeated labels correspond to either different locations
reported in the same publication, or to measurements on different sexes. Across studies, we found significant negative selection on phenological and no
statistically significant selection on morphological traits. There was significant variation in WMSD on phenological traits among fitness components. See
Fig. 2 for legend details. Results are robust to the exclusion of the outlier (publication identity 9). The majority of the species pictures were taken from
Pixabay (https://pixabay.com/images/). The exceptions are a picture of red-billed gull (credit: co-author J.A.M.) and four pictures taken from Macaulay
library (https://www.macaulaylibrary.org/). Illustration credits for pictures taken from Macaulay library: great reed warbler—Peter Kennerley/Macaulay
Library at the Cornell Lab of Ornithology (ML30060261), European pied flycatcher—Suzanne Labbé/Macaulay Library at the Cornell Lab of Ornithology
(ML30638911), song sparrow—Steven Mlodinow/Macaulay Library at the Cornell Lab of Ornithology (ML47325951) and Eurasian scops owl—Jon Lowes/
Macaulay Library at the Cornell Lab of Ornithology (ML103371221). Source data are provided as a Source Data file
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adaptive advancement of their phenology, emphasizing the pos-
sibility of species tracking their thermal niches in situ, which can
occur with or without shifts in geographic ranges43. However, we
did not find evidence for adaptive change in all species, and even
populations undergoing adaptive change may do so at a pace that
does not guarantee their persistence. We further document var-
iation among fitness components in the strength of selection, with
the strongest negative selection stemming from individual var-
iation in recruitment, followed by selection from variation in
reproduction and survival. Such strongest selection acting via
recruitment and reproduction may point to a mechanism
underlying adaptive phenological responses in birds, which is the
synchrony of breeding with the availability of resources7,9,44.

Our findings of adaptive phenological responses to global
warming in some bird species, reported here, should not be
interpreted over-optimistically. Indeed, perfect adaptation would
imply no selection and the significant directional selection
observed across studies thus indicates that adaptive responses are
imperfect, assuming selection estimates are not consistently
biased, for example, see ref. 45. Furthermore, the lack of a tem-
poral trend in the strength of selection means that, although
populations are not perfectly adapted in their phenology, they are
not getting more adapted or less maladapted over time as tem-
peratures continue to rise. This result suggests that they are
phenotypically tracking a shifting optimum, lagging behind at a
constant rate, as predicted by Bürger and Lynch35. Our com-
parisons of the actual vs. critical lags suggest that there is low but
non-negligible probability that the degree of maladaptation is
large enough for the majority of our study populations to be at

risk. The actual risk of population extinction may in fact be larger
because our estimations do not account for several sources of
stochasticity35. Moreover, our dataset predominantly includes
common and abundant species (e.g. Parus major, Cyanistes
caeruleus, Ficedula hypoleuca, Pica pica) for which collection of
selection data is relatively easy. The generality of adaptive phe-
nological responses among rare or endangered species, or those
with different life histories, remains to be established46. We fear
that the forecasts of population persistence for such species will
be more pessimistic.

To assess the extent to what animals are able to track climate
change, we here used an approach based on selection differentials
by testing whether selection over time is significant across studies,
and whether it is aligned with the direction of the phenotypic
change over time. Alternative approaches exist, for example, the
velocity of climate change can be used to assess the expected
phenological change that is required to track climate change18,47.
This approach allowed the authors to demonstrate that, in gen-
eral, faster phenological shifts occur in regions of faster climate
change18. Although it would be insightful to compare the results
obtained with the approach adopted here and the one based on
the velocity of climate, this would only be possible for phenolo-
gical, and not morphological traits.

Selection and trait change in our analyses were measured at the
phenotypic and not the genetic level. Therefore, we cannot
determine whether the adaptive phenological responses were due
to microevolution or adaptive phenotypic plasticity, nor their
relative contributions. Further insights would require differ-
entiating between genetic and environmental components of the
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phenotype and how each relates to the fitness of individuals10,48.
This could be done by using animal models11,49, employing
common-garden and reciprocal transplant experiments (approa-
ches more suitable for plants, invertebrates and fish) or by
combining genetic or genomic and phenotypic information10,50.
Further, our analyses are correlative and we cannot rule out the
possibility that the presumed effects of temperature are in fact
due to other or additional environmental variables that correlate
with climate, or that selection estimates are biased by

environmental correlations between trait and fitness51, or do not
accurately reflect total selection as a result of being based on
incomplete fitness measures.

Similar to the recent global assessments of the climate effects
on phenology17,34 and selection27, our datasets are heavily biased
towards studies from the Northern Hemisphere. Additionally, the
majority of the phenological traits in our datasets focus on early
season (spring) events. Previous research has shown that early
season phenological responses, especially at northern latitudes,
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are advancing with warming temperatures16,31,52, and therefore
an advancement of phenological events was our main working
assumption. Although the majority of phenological events is
reported to advance, delays with warming temperatures have also
been recorded17,53,54. For example, delay in emergence from
hibernation of Columbian ground squirrels was associated with
lower fitness, and thus was maladaptive53. Similarly, in our study,
the majority of maladaptive responses occurred when selection
acted in the direction of earlier phenological events, but observed
phenological events were delayed over the study period (Fig. 5a).
However, whether such delays are generally maladaptive across
hemispheres and seasons is unknown. We believe that our pro-
posed framework (Fig. 1) will facilitate answering such questions
in the future.

Decrease in body size was suggested to be the third general
response of species to global warming, together with changes in
phenology and distributions55,56. However, evidence for this
response is equivocal14,19,20,55,56. Our results suggest that
inconsistency in findings to date may be explained by different
studies focusing on different taxa (e.g. birds14,20, mammals57).
Indeed, we found that the association between morphological
traits and temperature tends to differ among taxa, with only
mammals showing a clear negative association. This finding
contrasts with a lack of relationship between temperature and
morphology reported for mammals by Meiri et al.57, potentially
because their study periods were longer than ours, and they used
a different morphological measure (condyle-basal length).
Although our PRC dataset is not exhaustive, our findings of
variation among taxa in both phenological and morphological
responses highlight the importance of collecting observations on a
wide range of taxa.

The assembled PRCS dataset suggests several avenues for fur-
ther research. For example, currently underappreciated effects of
climatic variation on traits and, in turn, on fitness and population
viability may be pronounced58 and our datasets could be used to
investigate them. Further, extending this dataset to incorporate
vital rates and, ideally, population growth rate would allow for the
mapping of environmental changes onto demography via phe-
notypic traits44,59,60, and ultimately a better assessment of how
trait responses impact population persistence.

Our results are an important first demonstration that, at least
in a range of bird species, adaptive phenological responses may
partially alleviate negative fitness effects of changing climate.
Further work is needed to quantify the extent of such buffering
and to broaden the taxonomic scope to determine if this con-
clusion also applies to species already encountering higher
extinction risk for reasons unrelated to climate. The PRC(S)
datasets that we assembled should stimulate research on the
resilience of animal populations in the face of global change and
contribute to a better predictive framework to assist future con-
servation management actions.

Methods
Systematic literature review. We aimed at assessing adaptive phenotypic
responses to climate change across six broad taxa of animals: arachnids, insects,
amphibians, reptiles, birds and mammals. We distinguished between two climatic
variables: temperature and precipitation. We relied on the authors of the original
studies for their expertise and knowledge of the biology of the species and system in
the: (1) choice of the appropriate time window over which the annual means of the
climatic values were calculated, rather than using a single time window for all
species. For instance, if in a bird study the mean temperature over the 2 months
preceding nesting was used as an explanatory variable for the timing of egg laying,
we used this specific climatic variable; (2) choice of the specific climatic variables,
be it air, sea surface or soil temperature, rather than using a single climatic variable
across all species; and (3) choice of the spatial scale of the study, so that the
measured variables were considered local at that scale. We focused on studies that
recorded both changes of at least one climatic variable over time and changes in
either morphological or phenological traits for at least one studied species.

Phenological traits reflect shifts in timing of biological events, for example, egg-
laying date, antler cast date or mean flight date in insects. Morphological traits
reflect the size or mass of the whole body or its parts (e.g., bill length, wing length,
body mass).

To assess whether trait changes were adaptive, we only used studies that
measured selection on the trait(s) of interest by means of linear selection
differentials29 using one of the following fitness components: recruitment,
reproduction, and adult survival. Linear selection differentials for all studies were
calculated following Lande and Arnold29, as the slope of the linear model, with
relative fitness (individual fitness divided by mean fitness) as response and the z-
transformed trait value as predictor. Only studies that reported SE estimates along
with annual linear selection differentials were retained. For the majority of studies,
we extracted selection differentials directly from the published studies, and for
12 studies, we calculated them ourselves using the respective individual-level data
shared by the authors.

To identify the studies satisfying the above-mentioned criteria, we searched the
Web of Knowledge (search conducted on 23 May 2016, Berlin) combining the
following keywords for climate change (‘climate change’ OR ‘temperat*’ OR ‘global
change’ OR ‘precipit’), adaptation (‘plastic*’ OR ‘adapt*’ OR ‘selection’ OR
‘reaction norm’) and trait category (‘body size’ OR ‘body mass’ OR ‘body length’
OR ‘emerg* date’ OR ‘arriv* date’ OR ‘breed* date’). For taxa, we used broad taxon
names in the first search (‘bird*’ OR ‘mammal*’ OR ‘arachnid*’ OR ‘insect*’ OR
‘reptil*’ OR ‘amphibia*’ OR ‘spider*’). Next, to increase the probability of finding
the relevant papers, we run the search by using instead of taxa names detailed
names below the level of the Class, as follows: (‘rodent*’ OR ‘primat*’ OR ‘rabbit*’
OR ‘hare’ OR ‘mole’ OR ‘shrew*’ OR ‘viverrid*’ OR ‘hyaena’ OR ‘bear*’ OR ‘seal*’
OR ‘mustelid*’ OR ‘skunk*’ OR ‘Ailurid*’ OR ‘walrus*’ OR ‘pinniped*’ OR ‘canid*’
OR ‘mongoos*’ OR ‘felid*’ OR ‘pangolin*’ OR ‘mammal*’ OR ‘bird*’ OR
‘flamingo*’ OR ‘pigeon*’ OR ‘grouse*’ OR ‘cuckoo*’ OR ‘turaco*’ OR ‘rail*’ OR
‘wader*’ OR ‘shorebird*’ OR ‘penguin*’ OR ‘stork*’ OR ‘pelican*’ OR ‘condor*’ OR
‘owl*’ OR ‘hornbill*’ OR “hoopoe*’ OR ‘kingfisher*’ OR ‘woodpecker*’ OR ‘falcon*’
OR ‘parrot*’ OR ‘songbird*’ OR ‘turtle*’ OR ‘tortoise*’ OR ‘lizard*’ OR ‘snake*’ OR
‘crocodil*’ OR ‘caiman*’ OR ‘alligator*’ OR ‘reptil*’ OR ‘frog*’ OR ‘salamander*’
OR ‘toad*’ OR ‘amphibia*’ OR ‘insect*’ OR ‘beetle*’ OR ‘butterfl*’ OR ‘moth*’ OR
‘mosquito*’ OR ‘midge*’ OR ‘dragonfly*’ OR ‘wasp*’ OR ‘bee*’ OR ‘ant*’ NOT
(‘fish*’ OR ‘water*’ OR ‘aquatic*’)). These detailed taxon names were combined
with the same keywords for climate change, adaptation and trait as before. Finally,
we joined the unique records from each of these two searches in a single database.

The literature search returned 10,090 publications, 56 of which were retained
after skimming the abstracts. Of these 56 publications, 23 contained the data
necessary to assess the three conditions required to infer adaptive responses and
were used for assembling the final dataset (PRCS dataset). In cases where several
publications reported on the same study system (same species in the same location,
measuring the same traits and selection via exactly same fitness components), we
retained the publication that reported data for the longest time period. We
assembled the PRCS dataset by directly extracting the data from the identified 23
publications wherever possible, or by contacting the authors to ask for the original
data. Data were extracted either from tables directly or from plots by digitizing
them with the help of WebPlotDigitiser or the metagear package in R61. In the
process of contacting the authors, one research group offered to share relevant
unpublished data on two more species, adding two more studies to the dataset,
totalling 25 publications. The PRCS dataset consisted of 71 studies containing data
on annual values of climatic factors, annual phenotypic trait values and annual
linear selection differentials for 17 species in 13 countries (Supplementary Data 3).

The remaining 33 publications from the originally selected 56 (58 with the
shared unpublished data considered as two publications) did not report data on
selection, but presented data on the annual values of climatic factors and mean
population phenotypic traits, totalling 4764 studies that covered 1401 species. We
retained these studies and combined them together with the 71 studies in the PRCS
dataset to assemble the ‘PRC’ dataset (Supplementary Data 3). With the PRC
dataset, we did not aim for comprehensive coverage of the literature published on
the topic. Instead, we used this larger PRC dataset to verify whether the smaller
PRCS dataset was representative in terms of climate change over time and trait
change in response to a climatic factor. A flowchart showing the numbers of studies
included at each stage of the systematic literature review is given in Supplementary
Fig. 10.

Assessing whether the responses are adaptive. Separate analyses were con-
ducted for the PRCS and PRC datasets and, within each of them, for temperature
and precipitation. All analyses were conducted using linear models as no deviation
from linearity was detected by visual inspection of the relations between (1) year
and climate, (2) trait and climate and (3) selection and year for each study (Sup-
plementary Figs. 11–15). First, we assessed for each study condition 1 necessary to
infer adaptive responses (i.e. the extent to which the climatic variable changed
directionally over years). To this end, we fitted for each study a mixed-effects
model with the climatic variable as the response and the year as a fixed covariate,
taking into account temporal autocorrelation (as random effect):

Climt ¼ αþ βClim ´Yeart þ εt þ ε; ð1Þ

where Clim is the quantitative climate variable, Year the quantitative year covariate,
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t the time, εt is a Gaussian random variable with mean zero and following an AR1
model over years, and ε is an independent Gaussian random variable with mean
zero and variance representing the residual variance of the study. βClim is the
regression coefficient reflecting the slope of the climatic variable on the year for the
study (Fig. 1b). To avoid overfitting, we refitted the same model without the
AR1 structure and retained, for each study, the model structure leading to the
lowest marginal AIC62. This approach was applied to all the models fitted to each
study (i.e. to assess conditions 2 and 3, and change of selection across years, as
described below).

We assessed condition 2, the relation between the trait and the climatic variable,
separately for phenological and morphological traits. For this, we fitted a mixed-
effects model for each study with mean annual population trait values as a response
and the climatic variable and the year as fixed effects. Year was included as a
quantitative predictor in this model to account for the effects of variables other
than the considered climatic variable, which had changed with time and could have
affected the trait. Examples of such variables are any environmental alterations,
such as land use change and succession but also other climatic variables, which
potentially could have affected the trait, but for which we did not have data. In this
model, we took into account temporal autocorrelation in the response variable and
weighted the residual variance by the variance of the response variable (i.e. the
reported squared SE of the mean annual population trait values) to account for
between-year variation in uncertainty associated with mean annual population trait
values. Prior to fitting the models we z-transformed trait values (i.e. subtracted the
mean and divided by their reported standard deviation) to later compare the effect
of the climatic variable on different traits. Accordingly, we also transformed the
weights of the residual variance by dividing the reported SEs by the SD of the mean
annual population trait values per study. The fitted model was:

Traitt ¼ αþ βTrait ´Climt þ γ ´Yeart þ εt þ ε; ð2Þ
where Trait is the mean phenotypic trait (z-scaled across the years within the
study), Clim the quantitative climate covariate, Year the quantitative year covariate,
t the time, εt is a Gaussian random variable with mean zero and following a AR1
model over years, and ε is an independent Gaussian random variable with mean
zero and variance proportional to the estimated variance of the mean phenotypic
trait (which depends on t). βTrait is the regression coefficient reflecting the slope of
the trait on the climatic variable for the study (Fig. 1c).

We assessed condition 3 of whether the trait change was associated with fitness
benefits in a two-step procedure. In the first step, we fitted for each study an
intercept-only mixed-effects model with annual linear selection differentials as a
response. We allowed for temporal autocorrelation and weighted the residual
variance by the variance of the annual linear selection differentials (i.e. the reported
squared SE of the annual selection differentials). The fitted model was:

Selt ¼ αþ εt þ ε; ð3Þ
where Sel is the estimate of the yearly linear selection differential, t is the time, εt is
a Gaussian random variable with mean zero and following an AR1 model over
years, and ε is an independent Gaussian random variable with mean zero and
variance proportional to the estimated variance of the annual linear selection
differential (which depends on t). The intercept α describes a non-zero mean of the
autoregressive process. The predictions from the fitted model (Selt), including the
random effect, are estimates of annual linear selection differentials, and their
inverse-variance weighted average is termed ‘weighted mean annual selection
differential’, WMSD (Fig. 1e). The variance used in weighting is the prediction
variance. The SE of the WMSD is deduced from these weights and from the
covariance matrix of the predictions (see source code of the function extract_effects
() in our R package ‘adRes’ for details).

In the second step, to assess whether the response is adaptive, we considered
WMSD in combination with the slopes obtained for the previous two conditions, as
follows: we defined a trait change to be adaptive in response to climate if the
climate-driven change in phenotype occurred in the same direction as linear
selection. In contrast, if the climate-driven change in phenotype occurred in the
direction opposite to selection, then the response was considered maladaptive. We
measured the climate-driven change in phenotype as the product of the slopes
obtained for conditions 1 and 2. A WMSD estimate of zero indicates a lack of
selection11. A WMSD of zero together with no trait change could indicate a
stationary optimum phenotype, and a WMSD of zero together with a significant
change in trait could indicate that a moving optimum phenotype is perfectly
tracked by phenotypic plasticity (a negligible WMSD could also imply a flat fitness
surface, i.e. no fitness penalty for deviating from the optimum). To assess whether
the trait is adaptive, we plotted for each study the WMSD against the product of
slopes extracted from conditions 1 and 2, which quantifies the observed climate-
driven trait change over time (Fig. 5). The studies qualify as adaptive if their
WMSD has the same sign as the product of the slopes assessing conditions 1 and 2.

We also fitted a modified version of the model specified in Eq. (3) to assess a
potential temporal (linear) change in the annual linear selection differentials over
years. To this end, for each study we fitted a mixed-effects model that accounted for
temporal autocorrelation. We weighted the residual variance by the variance of the
annual linear selection differentials (i.e. the reported squared SE) to account for
uncertainty in the estimates of annual selection differentials. The fitted model was:

Selt ¼ αþ βSel ´Yeart þ εt þ ε; ð4Þ

where Sel is the estimate of the yearly linear selection differential, Year the
quantitative year covariate, t the time, εt a Gaussian random variable with mean
zero and following an AR1 model over years, and ε is an independent Gaussian
random variable with mean zero and variance proportional to the estimated
variance of the yearly linear selection differential (which depends on t). βSel is the
regression coefficient that corresponds to the slope of the annual linear selection
differentials on the year for the study.

Meta-analyses. To demonstrate general responses across species and locations, we
require each of the three conditions necessary to infer adaptive responses to be met
consistently across studies, for example, that, on average, temperature increased
over time, warmer temperatures were associated with advancing phenology and
advancing phenology corresponded to fitness benefits (i.e. negative selection on
phenological traits given the two above-mentioned conditions are satisfied). To test
for such general trends in adaptive responses across studies, we fitted three mixed-
effects meta-analyses to the PRCS dataset, two for the first two conditions and the
third to assess whether WMSD differed from zero. We tested the third condition in
two ways. First, we performed a binomial test to compare the proportion of studies
exhibiting adaptive (i.e. same sign for WMSD and the climate-driven trait change
over time) vs. maladaptive (i.e. WMSD and the climate-driven trait change over
time differ in their signs) responses to climate change. Second, we performed a
mixed-effects meta-analysis similar to the three other ones.

First, we assessed whether, across studies, the values of the climatic factor
changed with time by using the slope of a climatic factor on year (obtained from
the mixed-effects models of condition 1 for each study, see above) as response (i.e.
effect size in meta-analysis terminology), and study identity and publication
identity as qualitative variables defining random effects influencing the intercept.
Second, to assess whether climate change was associated with trait changes across
studies, we used the slope of the z-transformed trait on the climatic factor
(obtained from the mixed-effects models of condition 2 while accounting for the
effect of year on the trait) as response and study identity and publication identity as
qualitative variables defining random effects influencing the intercept. We fitted
separate models for phenological and morphological traits, because our dataset
contained fewer studies of the latter compared to the former. Since morphological
traits included either measures of body mass or size (e.g. wing, tarsus and skull
length), we tested whether the effect of temperature depended on the type of
measure by including it as a fixed-effect covariate with three levels (body mass, size
and body condition index; we distinguished body condition index from the two
other levels as it has elements of both of them). Analogously, we assessed whether
the effect of temperature on phenology depended on the type of phenological
measure used, by including it as a fixed-effect covariate with three levels, similarly
to Cohen et al.17: arrival, breeding/rearing (e.g. nesting, egg laying, birth, hatching)
and development (e.g. time in a certain developmental stage, antler casting date).
Third, to assess whether, across studies, traits were under positive or negative
selection during the study period, we used as response the WMSD values obtained
from the mixed-effect models for the first step assessing condition 3. In this model,
we also used study identity and publication identity as qualitative variables defining
random effects influencing the intercept. We tested whether selection depended on
generation length and differed among fitness components by including these latter
variables as fixed effects in the model. Generation length was extracted from the
literature, mainly using the electronic database of BirdLife International. Similarly,
to assess whether across studies there was a directional linear change in the annual
linear selection differentials over time, we fitted a mixed-effects model using as
response the slopes of the annual linear selection differentials on time (obtained
with Eq. (4)). This model included study identity and publication identity as
qualitative variables defining random effects influencing the intercept. Finally, to
assess whether responses were on average adaptive, we also ran a mixed-effects
meta-analytic model using as response the product of the WMSD with the sign of
the climate-driven trait change over time. We included study identity and
publication identity as qualitative variables defining the random effects in this
model. We fitted separate models for phenological and morphological traits to test
whether both WMSD and the product of WMSD with the sign of the climate-
driven trait change differed from zero.

For each type of climatic variable (temperature and precipitation) in the PRC
dataset, we fitted two mixed-effects meta-analyses, analogous to the mixed-effects
meta-analytic models we ran on the PRCS dataset. With these meta-analyses we
assessed whether across the studies (1) there was a directional change in the
climatic values over time and (2) traits were affected by the climatic variable. As
responses (i.e. effect sizes) in these models, we used the slopes extracted for each
study from the respective mixed-effects models fitted analogously to those used for
the PRCS dataset (see section above). For both morphological and phenological
traits, we assessed whether the effect of climate on traits differed among taxa by
including taxon as a fixed effect. For morphological traits, we also assessed whether
the responses to climate differed among endothermic and ectothermic animals, by
including endothermy as a fixed effect in the model.

All data analyses were conducted in R version 3.5.063 and implemented in the R
package ‘adRes’, which is provided for the sake of transparency and reproducibility.
Mixed-effects models for each study and mixed-effects meta-analytic models were
fitted using restricted maximum likelihood (ML) with the spaMM package version
2.4.9464. For each meta-analytic mixed-effects model, we conducted model
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diagnostics by inspecting whether the standardized residuals deviated from a
normal distribution and whether there were any patterns in standardized residuals
when regressed on the predictor. Model diagnostics were satisfactory for all models.
We assessed the significance of fixed effects and intercepts with asymptotic
likelihood ratio χ2 tests by comparing the model with a given effect vs. the model
without the effect, both fitted using ML in spaMM.

We assessed the amount of heterogeneity among studies in our meta-analyses
using commonly recommended approaches65. In particular, we tested whether the
total amount of heterogeneity (Q) was statistically significant and estimated
Higgins I2 and H2 (ref. 65). Higgins I2 reflects the proportion of total heterogeneity
due to between-study variation (i.e. random effects) and ranges from 0 to 1. A value
of 0 means that heterogeneity is due to within-study variation exclusively, whereas
a value of 1 indicates that heterogeneity is due to between-study variation. This
metric is, therefore, comparable among different meta-analyses. H2 is a ratio
showing the proportion of observed heterogeneity in relation to what would be
expected under the null hypothesis of homogeneity. For example, a value of 2
means that there is twice as much variation as would be expected if no between-
study variation were present (i.e. H2= 1). We found that the amount of
heterogeneity differed among the two datasets and tested models, with moderate
heterogeneity for models testing conditions 1 and 2 and considerable heterogeneity
for models testing condition 3 (Supplementary Note 1, Supplementary Table 1).

We also tested for the evidence of publication bias by (1) visual inspection of the
funnel plots and (2) Egger’s test65. No evidence of small-study effect (that may be
an indication of publication bias) was found for effect sizes used to test all three
conditions in the PRCS dataset (Supplementary Figs. 16–17, Supplementary
Note 1).

Sensitivity analyses. One study in the meta-analytical models testing conditions 2
and 3 for phenology in the PRCS dataset appeared to be an outlier (ref. 66, Figs. 3
and 4). Therefore, we also re-ran the models without this study (Supplementary
Tables 2 and 3). Additionally, the PRCS dataset contained mainly studies on bird
species, and only one for a mammal species67. To test how sensitive the results were
to inclusion of this taxon, we re-ran the analyses after excluding the study for
mammal species. The main findings were qualitatively unaffected by excluding
either the only mammal study or an apparent outlier from the PRCS dataset, or
both (Supplementary Tables 2 and 3).

Measures of phenological responses are known to be sensitive to
methodological biases30, in particular to temporal trends in abundance of the
sampled species32. Indeed, if species abundance increases over time, the probability
of recording earlier events increases (especially if phenology is measured as the first
occurrence date), meaning that species abundance can affect mean of the
distribution of a phenological trait. For the same reason, the variance around the
mean phenological response may be sensitive to population size, with higher
variance at lower population sizes. To assess the sensitivity of our results to
potential changes in population sizes over time, we fitted a heteroskedastic model
in which population abundance was included both as a fixed-effect explanatory
variable and as an explanatory variable for the model of the residual variance. This
model is an extension of the models specified in Eq. (2) that were used to assess
condition 2. This model was fit to each study for which abundance data were
available and where the duration of the study was at least 11 years (28 out of
42 studies). The fitted model was:

Traitt ¼ αþ βTrait ´Climt þ γ ´Yeart þ δ ´Abundt þ εt þ ε; ð5Þ

where Trait is the mean phenotypic trait (z-scaled across the years within each
study), Clim the quantitative climate covariate, Year the quantitative year covariate,
Abund the quantitative covariate for species abundance, t the time, εt is a Gaussian
random variable with mean zero and following an AR1 model over years, and ε is
an independent Gaussian random variable with mean zero and variance
proportional to the estimated variance of the mean phenotypic trait (which
depends on t). βTrait, γ and δ are regression coefficients that correspond to the
slopes of the trait on the climatic variable, the trait on year and the trait on the
abundance for the study, respectively. To avoid overfitting, we refitted the same
model without the AR1 structure and retained, for each study, the model structure
leading to the lowest marginal AIC, analogously to how it was done for the models
fitted to assess conditions 1, 2 and 3.

The results were qualitatively unaffected by the inclusion of abundance in the
models: the rate of advancement in phenology estimated across the studies was
−0.346 ± 0.102 SD per °C (LRT between the model with and without change in
phenology: χ2= 8.4, df= 1, p= 0.004) when including abundance and −0.335 ±
0.088 SD per °C without abundance (LRT: χ2= 9.19, df= 1, p= 0.002; for
comparison’s sake both models were fitted to a subset of studies for which
abundance data were available). We also found that although abundance affects
phenology, its effects were on average smaller compared to the effects of
temperature (Supplementary Fig. 6).

Implications for population persistence. To assess implications of our findings for
population persistence, we first calculated the actual lag (Lag) between the observed

mean phenotype and the optimum by following Estes and Arnold (2007)37:

Lag ¼ β � ω2 þ σ2p

� �
; ð6Þ

where β is a standardized linear selection differential, ω2 a width of the fitness
function, and σ2p phenotypic variance (here scaled to 1). This lag is expected to be
asymptotically constant when the optimum is shifting at a constant rate and under
other assumptions detailed in Bürger and Lynch35.

Next, we calculated the critical lag (Lagcrit) between the phenotype and the
optimum following Bürger and Lynch35 (see also ref. 68):

Lagcrit ¼ kc=s; ð7Þ
where kc is the critical rate of environmental change and s is a measure for the
strength of selection, s ¼ σ2g=

�
σ2g þ Vs

�
, with σ2g genetic variance and Vs the

strength of stabilizing selection around the optimum, calculated as Vs ¼ ω2 þ σ2e ,
with ω2 the width of the fitness function and σ2e environmental variance in the trait.

The critical lag reflects a situation where the population can just replace itself
(population growth λ= 1) and comparison between the actual and the critical lag
provides insight into the persistence of populations. If the actual lag is larger than
the critical lag, then the population growth rate is lower than 1, implying
substantial extinction risk. We therefore focused our numeric analyses on this
difference between the actual lag and the critical lag. Note that this analysis relies
on strong assumptions described in the original papers (e.g. heritability is
considered in the estimation of the critical lag but not in that of the actual lag, and
that the reverse is true for plasticity), but more accurate methods, for example,
ref. 36, would require detailed data that are not available for most of our study
populations.

In the first step, we assessed the difference between the actual and the critical lag
across a range of parameter values (Supplementary Table 4) to study the sensitivity
of the difference to known (i.e. estimated) or unknown parameters. This analysis
revealed that the results are most sensitive to the values of ω2 and β (Fig. 6a–f).
Therefore, in the second step, we computed the difference among the observed and
critical lags for each study in our PRCS dataset (Fig. 6g), by (1) using as β the
absolute values of the estimates of WMSD for each study and (2) drawing 1000
random ω2 per study. We drew these random values from the empirical
distribution of ω2 estimates provided in Fig. 7 from Estes and Arnold37.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The PRC dataset, containing metadata on each study as well as coefficients estimated for
each step of the framework (Fig. 1) per each study, is available as Supplementary Data 4.
We also make available the raw data for a subset of studies for which we received the
consent of data owners (4819 out of 4835 studies). These data are available as part of the
R package ‘adRes’ (www.github.com/radchukv/adRes), which implements the complete
workflow of this study and provides functions to be used to conduct similar analyses on
new data in the future. The source data underlying Figs. 1b, c, 1e, f, 2, 3, 4 and 5a–c are
provided as a Source Data file.

Code availability
The complete workflow implementing each step of the proposed framework (Fig. 1) is
available as the R package ‘adRes’ (www.github.com/radchukv/adRes). The functions
included in the package allow conducting the analyses as described in this study and can
be applied to either the shared dataset that is included in the R package or to a new
dataset formatted in the same way.
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