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Abstract

In recent years, simulation methods such as approximate Bayesian computation have extensively been used to infer

parameters of population genetic models where the likelihood is intractable. We describe an alternative approach,

summary likelihood, that provides a likelihood-based analysis of the information retained in the summary statistics

whose distribution is simulated. We provide an automated implementation as a standard R package, Infusion, and

we test the method, in particular for a scenario of inference of population-size change from genetic data. We show

that the method provides confidence intervals with controlled coverage independently of a prior distribution on

parameters, in contrast to approximate Bayesian computation. We expect the method to be applicable for at least six-

parameter models and discuss possible modifications for higher-dimensional inference problems.
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Introduction

In recent years, simulation-based methods have been

developed to estimate parameters of natural processes

for situations in which the computation of the likelihood

is intractable. By far, the most widely used approach in

population genetics is approximate Bayesian computa-

tion (ABC) which, given a prior density of parameters of

the process considered, uses simulation to construct an

estimate of the posterior density of parameters from

observed summary statistics (e.g. Beaumont et al. 2002;

Marjoram & Tavar�e 2006; Beaumont 2010). Point esti-

mates and credible intervals for the parameters can be

derived from the posterior distribution using standard

techniques.

In this work, we develop an alternative to ABC meth-

ods and software, to deal with the same broad class of

situations where likelihood is intractable, whether in

population genetics or not. The method considered here

is called summary likelihood, which makes clear that it

is not full-data likelihood but is still a form of likelihood-

based inference, which one can perform if the full data

have been summarized and thrown away and only the

summary statistics are available. It provides ‘maximum

summary-likelihood’ estimates of parameters, and ‘sum-

mary-likelihood’-based confidence intervals defined

analogously to the estimates and confidence intervals

based on full-data likelihood. Thus, its performance can

be assessed in terms of the probability that the intervals

include the parameter values (coverage).

It is expected from theory (e.g. Cox & Hinkley 1974;

Casella & Berger 2002), but less well recognized in prac-

tice, that the credible intervals produced by ABC have

no simple relationship with confidence intervals. Credi-

ble intervals may occasionally provide reasonable

approximations for confidence intervals, but are not

specifically adapted for that purpose. The different inter-

vals (and more generally, regions for several parameters)

are, or can be, defined in terms of their coverage under

different sampling schemes. Credible intervals can be

defined as intervals with known coverage (e.g. the con-

ventional 95% coverage) over a prior distribution of

parameters, for given data. Credible intervals defined in

this way then also have known average coverage jointly

under the given prior distribution for the parameters
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and under repeated sampling of data. In contrast, confi-

dence intervals should have known coverage for any

given parameter value and thus for any prior distribu-

tion on parameters. The latter properties are usually not

considered in ABC studies. One exception can be found

in Peter et al. (2010, Appendix S3), who considered prob-

lems of inference of past population history, and found

in simulations that credible intervals had higher cover-

age over parts of the parameter space, and lower cover-

age over other parts, so that only average coverage was

controlled.

Summary likelihood follows essentially the same

idea as discussed by Diggle & Gratton (1984) in the first

dedicated discussion of generic approaches for simula-

tion-based inference. Although similar ideas are recur-

rently considered (e.g. Rubio & Johansen 2013; Bertl

et al. 2015), we are unaware of any generic implementa-

tion, which would further have demonstrated perfor-

mance in terms of coverage. One of the factors that

may have inhibited the spread of such methods may be

the limited reliability and/or the computer require-

ments of available smoothing techniques, on which a

generic and automated software implementation could

be based.

We have implemented summary likelihood in the R

package Infusion, which is available on the Compre-

hensive R Archive Network, and which name stands

for Inference using simulation. The current imple-

mentation handles models with less than nine parame-

ters and is based on two main sets of techniques: the

modelling of empirical distributions of summary statis-

tics using mixtures of Gaussian distribution, as imple-

mented in the Rmixmod package (Lebret et al. 2015),

and the inference of likelihood surfaces from estimates

of the likelihood of given parameter points, using

methods implemented in the spaMM and blackbox

packages (Rousset & Ferdy 2014; Rousset 2016). Previ-

ous attempts have considered kernel smoothing meth-

ods that can also be called by the Infusion

procedures, but available implementations have appar-

ent constraints (in particular, in terms of number of

variables handled), which make them insufficient for

implementation of summary likelihood.

In the following, we first introduce the summary-like-

lihood method and its implementation through a toy

example based on the Gaussian distribution. Next, we

will discuss how the package provides access to several

methods for reducing the number of summary statistics,

an important functionality not illustrated by this first

example. To compare the method with ABC, we will

reconsider the population-size change scenario of Peter

et al. (2010), in which case we can demonstrate better

coverage of the confidence intervals than achieved in

that work. Finally, we will discuss possible modifications

of the current implementation, for example to deal with

higher-dimensional parameter space.

Methods

Toy example with most informative statistics

We consider here the estimation of the mean l and vari-

ance r2 of a Gaussian distribution from the sample mean

~l and bias-corrected sample variance ~r2 of 40 observa-

tions drawn from a Gaussian distribution. Simulation-

based inference is obviously not necessary for such

estimation, but it is easily visualized, and easily compara-

ble to alternative methods. As the statistics ~l and ~r2 each

contain all information about each of the parameters of

the Gaussian distribution, we expect the results to be prac-

tically equivalent to standard likelihood-based inference.

In this example, as in any application of the method,

users must provide either tables of simulated summary

statistics, or more conveniently a simulation function

that can be called by the package’s functions. Here, this

function returns a vector of summary statistics ~l and ~r2,
for given parameter values. In R code, this function may

be written

myrnorm <-function(mu, s2, sample.size) {

s <- rnorm(n=sample.size, mean=mu, sd=sqrt(s2))

return(c(mean=mean(s), var=var(s)))

}

For purposes of illustration, we produce a realization

that will stand for the actual data to be analysed, for the

parameter values l = 4 and r = 1 to be estimated:

set.seed(123) ## initialize the random generator

Sobs <- myrnorm(mu=4, s2=1, sample.size=40)

The obtained Sobs has elements mean = ~l ¼ 4:045

and var = ~r2 ¼ 0:806. The maximum-likelihood estimate

of the mean is ~l, and the maximum-likelihood estimate

of the variance is r̂2 � ~r2ðn� 1Þ=n ¼ 0:786. Further, the

Student’s t-based exact 95% confidence interval for the

mean l is [3.76, 4.33]. It uses the exact conditional distri-

bution of t given the sample variance. Alternatively, the

more generally available v2 approximation for the distri-

bution of the (profile) log-likelihood ratio may be used to

construct approximate likelihood-based confidence inter-

vals (or more generally, confidence regions). The likeli-

hood of the data can be written in terms of the sample

mean and variance (see, e.g. Davison 2003, p. 66). For the

mean, the resulting profile likelihood-based confidence

interval is [3.77, 4.32]. Likewise, confidence intervals for

the variance can be constructed using the exact distribu-

tion of the sample variance (yielding the interval [0.541,

1.33]) or the profile likelihood-based approximation

(yielding the interval [0.522, 1.26]). The approximate
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confidence intervals appear similar to the exact intervals,

except for the upper bound of the variance.

Our goal in this example is to recover the likelihood-

based confidence intervals by summary likelihood,

ignoring the specific results that provide the above inter-

vals by analytical means. For that purpose, we will

explore the parameter space to evaluate the probability

density of the statistics for different parameter

(h = (l, r2)) values. This exploration is iterative: a first

step provides first estimates; then, new parameters

points are chosen, for which new simulations are per-

formed, and refined estimates are produced. At each

step, a log-likelihood surface is inferred from the esti-

mated log-likelihoods in different parameter points.

Estimating a surface from points each estimated with

some error is a classical problem in machine learning or

‘computer experiments’ (e.g. Bingham et al. 2014) and

requires some form of smoothing. A standard approach to

this problem (e.g. Sacks et al. 1989; Welch et al. 1992) is to

use variants of Kriging, that is of prediction under a linear

mixed model with autocorrelated random effects. This

will be reliable only if the smoothing parameters (that is,

the variance and autocorrelation parameters of the ran-

dom effects) are all estimated. The first set of parameter

points is therefore defined so as to facilitate estimation of

smoothing parameters: we sample the parameters of the

simulation function along an irregular grid (a regular grid

is inappropriate to estimate autocorrelation parameters;

Zimmerman 2006) including some replicated points (suit-

able for estimating the residual variance of the mixed

model, which is essential for good smoothing). A conve-

nience function init_grid is available to perform this

initial sampling given an initial range of parameters:

library(Infusion)

parsp <- init_grid(lower=c(mu=2.8, s2=0.4,

sample.size=40),

upper=c(mu=5.2, s2=2.4, sample.size=40))

We use the add_simulation function from the

package to build a list of simulated distributions for this

set of h values.

simuls <- add_simulation(Simulate=“myrnorm”,

par.grid=parsp)

For each parameter point h, add_simulation has

simulated an empirical distribution of summary statistics

(by default, of 1000 realizations) by directly calling the

myrnorm function given as argument Simulate. In

more involved applications, the simulation code may not

be callable from R, but this case is also handled by

add_simulation, which can accept as input a new data

frame of simulated summary statistics for given parame-

ter values.

We then estimate the probability density of the

observed summary statistics Sobs for each simulated

distribution, using the infer_logLs function:

densv <- infer_logLs(simuls, stat.obs=Sobs)

infer_logLs performs a smoothing of the empirical

distribution of summary statistics for given h, using by

default functions from the Rmixmod package to fit a mix-

ture model of Gaussian distributions to each empirical

distribution (Fig. 1a). infer_logLs uses Akaike’s infor-

mation criterion, justified as a measure of predictive

accuracy (Akaike 1974), to select among mixture models

with different numbers of Gaussian components. It then

infers the log-likelihood of the given h as the log-density

of the observed summary statistics in the fitted Gaussian

mixture model (Fig. 1b).

We can then estimate a summary log-likelihood surface

by smoothing all estimates of log-likelihoods of parame-

ters obtained in this way. This is performed by calling,

slik <- infer_surface(densv)

where slik is an object of class SLik (pronounced

‘sleek’). It contains information about practically all com-

putations previously carried out, except the simulated

distributions.

Parameter inference can then be performed as if

the summary log-likelihood surface was a full-data

log-likelihood surface. In particular, we can obtain

from it the ‘maximum summary-likelihood’ (MSL)

estimate as well as confidence intervals, using the

MSL function:

slik2 <- MSL(slik) ## adds estimates and intervals

to the object

One can also visualize the results by, for example

plot(slik2, filled=TRUE), which in the present case

shows both the bounds of confidence intervals and the

two-dimensional confidence region (Fig. 1c). The first

estimates are inaccurate, but can be improved iteratively

(Fig. 1d) as described below.

Given the data, the parameter estimates and intervals

have some random error as the probability densities on

which they are based are themselves estimated with

some error. A feature contributing to the performance is

that linear mixed model theory provides estimates of pre-

diction uncertainty of the summary log-likelihood sur-

face, specifically a covariance matrix of the predictions of

the log-likelihood in given points. From this covariance

matrix, the MSL function computes the prediction vari-

ance of the log-likelihood ratio at the current confidence

bounds. This can be used to determine whether more

simulations should be run to reduce uncertainty.

Another feature contributing to the performance of

the summary-likelihood method is the use of appropriate
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(a) (b)

(c) (d)

Fig. 1 Steps of the inference of the likelihood surface. The plots in the top row show the inference of the log-likelihood, here for parame-

ters (l = 3.19, r2 = 0.81), and for data summarized by the statistics ð~l ¼ 4:045; ~r2 ¼ 0:806Þ. In the present example, the empirical distri-

bution is fitted by a mixture of two Gaussian distributions, with location and covariance matrices represented by ellipses depicted in

plot (a). The likelihood of the parameters is then given by the inferred density of the observed summary statistics in this Gaussian mix-

ture model (plot b). The plots in the bottom row show the profile likelihood ratio surfaces inferred from the inferred log-likelihoods of

different parameter points. The scale is that of the likelihood ratio relative to the maximum. The blue and red circles mark, respectively,

the estimated maximum-likelihood point and the confidence intervals points, that is, the out-most points on the contour defined by the

profile likelihood threshold for the profile confidence intervals. There is a pair of CI points for each interval. Also shown is the inferred

contour of the 95% confidence region for both parameters.
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methods to estimate the smoothing parameters for infer-

ence of the log-likelihood surface. In Infusion, this esti-

mation is performed automatically, by default using

restricted likelihood (REML) estimation of random effect

parameters. There is no need for the user to guess any

smoothing parameter.

We then use ‘expected improvement’ methods (e.g.

Bingham et al. 2014) to determine the new parameter

points for which new empirical distributions of sum-

mary statistics will be simulated. The aim of expected

improvement methods is to account for the fact that

parameter regions that have yet been little sampled typi-

cally have high prediction variance, and may thus be

worth sampling even if their predicted likelihood is rela-

tively low in such regions. This again makes use of mea-

sures of prediction uncertainty, not specifically for the

current estimates of summary log-likelihood in current

estimates of the target points, but for any candidate point

in parameter space. This approach is used here specifi-

cally to identify more accurately the maximum-likeli-

hood estimates, but also the confidence limits. In the

latter case, confidence limits (k�, k+) for any parameter k
are deduced from the profile log-likelihood ratio defined

by maximization over other parameters. Then, expected

improvement is used to select new values of these other

parameters given k = k� or k = k+.
In the current implementation, it is by default

assumed that simulating the distribution of statistics is

more costly than other computation steps; hence, only a

few new parameter points are defined in each iteration.

Here, there are five target values (the maximum and two

interval bounds for each of two parameters), and on

average, three points are defined for each of these tar-

gets, with more or fewer points depending on the rela-

tive prediction uncertainty of log-likelihood for the

current estimates of the targets. In addition, distributions

of summary statistics are computed for a few parameter

points taken from the previous iterations. These repli-

cates are computed to improve smoothing (as in the first

iteration). In total, about twenty empirical distributions

are added in each iteration for this two-parameter

model.

An important feature of the iterative approach is that

it is not very important to have accurate estimation of

likelihood in each parameter point, because the accumu-

lation of likelihood estimates near a target point over

successive iterations will provide, by the infill asymp-

totic properties of Kriging (Stein 1999), an accurate esti-

mation of log-likelihood at the target point.

According to such principles, we can therefore refine

estimates iteratively, using the refine function

slik3 <- refine(slik2) ## performs new simulations

and updates the object

The results after two successive refine calls, which

added simulations for 38 new likelihood values, are

shown in Fig. 1d. The point estimates are

l̂ ¼ 4:047; r̂2 ¼ 0:794, with interval [3.775, 4.303] for l
and [0.548, 1.245] for r2, clearly approaching the analyti-

cal likelihood-based intervals.

Projecting summary statistics

The previous example did not address all difficulties of

simulation-based inference, as we started from statistics

known to contain all information about the parameters.

In practice, one often has to deal with less appropriate

statistics.

Further, these statistics are often in excess of the num-

ber of parameters. Although the above functions can deal

with this case, it may be necessary to reduce the number

of statistics. Such a reduction is useful because it will

reduce the computation time of the smoothing of empiri-

cal distribution of summary statistics, which might

otherwise become prohibitive as the number of statistics

increases. The need to reduce the number of summary

statistics is also discussed in the ABC literature, where

neural networks (Blum & Franc�ois 2010), boosting proce-

dures based on weighting of different predictors (Aesch-

bacher et al. 2012), random forests (Pudlo et al. 2016) and

simple linear regression (Fearnhead & Prangle 2012)

have been used. Kriging can also be used for this step

but may be much slower. We refer to all relevant meth-

ods as ‘projection methods’.

The package provides a project function that acts as

an interface for various projection methods. One must

call once (before the infer_logLs call) the project

function for a parameter given as its first argument, for

example

mufit <- project(“mu”, stats=c(“mean”, “var”),

data=simuls)

This call constructs a projector function (here called

mufit) that will compute from the given statistics (stats

argument) a single summary statistic for the given

parameter (here, the mean). This function is a predictor

of the given parameter, constructed from the input data

(simulations of original summary statistics for known

parameter values). Similarly, we create a projector func-

tion s2fit that will compute a summary statistic for the

variance:

s2fit <- project(“s2”, stats=c(“mean”, “var”),

data=simuls)

Next, one applies all defined projectors both on the

observed summary statistics and on the initial simula-

tions. For example, given two projectors mufit and s2fit,

we construct projected values projSobs of the
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summary statistics and projSimuls of the simulation

table by running

projSobs <- project(Sobs, projectors=list

(MEAN=mufit, VAR=s2fit))

projSimuls <- project(simuls, projectors=list

(MEAN=mufit, VAR=s2fit))

This calls again project, but now with statistics

rather than parameter names as first argument, thereby

calling a distinct method of a generic project function.

The projectors argument determines the names of the

new summary statistics, which are here MEAN and VAR.

The project function is not further explicitly called by the

user in the sequel of the analysis, as the projector func-

tions have been previously defined and are called auto-

matically in subsequent calls to refine, provided

projSobs and projSimuls are provided as arguments

to the initial infer_logLs call. The documentation

available on the package web page, and the R script for

the population-size change model (see Supporting Infor-

mation), provides complete examples using several pro-

jection methods.

Summary of main procedures in the Infusion
package

The above example has introduced the main functions

and the work flow of a typical analysis, successively

using init_grid (optional, but safe), add_simula-

tion, project (optional), infer_logLs, infer_sur-

face, MSL (all called once) and refine (which can then

be called repeatedly). Other convenient functions include

a predict method that returns the log-likelihood for a

given complete vector h of parameter values; a profile

method that gives the value of the profile log-likelihood

at the given set of parameter values (i.e. any subset of

values of the parameter vector h); a confint method that

gives a confidence interval for a given parameter value

(any element of h); and functions plot1Dprof and

plot2Dprof, which plot one- and two-dimensional like-

lihood ratio profiles. When called at each iteration, these

functions allow the user to monitor the progress and in

particular to check that a good initial parameter range

has been chosen.

Assessing the validity of the confidence intervals

Here, we will discuss the performance of summary likeli-

hood in an evolutionary demographic situation, the

population-size change (PSC) model. We chose this sce-

nario because it has already been considered in an ABC

application, where some assessment of coverage was

provided as function of parameter values (Peter et al.

2010).

Simulation model and summary statistics

The PSC model allows for exponential growth or decline

at a constant rate starting from the current population

with size N0, and, going backwards in time, to vary expo-

nentially over t generations to a population of size Nt. In

this model, the population size at a given generation i is

computed as follows: Ni = N0a
i/t, with a = N0/Nt.

The empirical distributions of summary statistics

were simulated for parameters drawn from log-uniform

distributions in the following ranges for the three model

parameters: N0 2 [100, 50 000], a 2 [10�3, 103] and

t 2 [1, 103]. We simulated 200 unlinked microsatellite

loci for samples of size n = 25 diploids individuals.

Microsatellite data were generated under a generalized

stepwise model (GSM) with a mutation rate l = 5.10�4.

As in Peter et al. (2010), we estimated a and the scaled

parameters h = N0l and s = t/N0 of the PSC model.

We used the software IBDsim (Leblois et al. 2009) to

make the coalescent-based simulations by calling its

command-line version from R. We computed the follow-

ing six summary statistics on the simulated data sets: the

FIS, Garza & Williamson’s (2001) M, the number of alleles

K, the heterozygosity H and the standard deviations of H

and K over loci, as in the original study. Neural networks

were used to generate three projected summary statistics

from these six ones.

Coverage property assessment

As summary likelihood is an approximate method, we

checked the convergence of the estimation of confidence

intervals by computing the coverage probability along a

range of parameters under the PSC model.

We simulated data sets for known parameters and

then checked whether we were able to correctly estimate

them. We did this for 10 sets of parameters, where we

simulated 200 data sets under the PSC model for each

set. We then estimated the 90% and 95% confidence

intervals for each of the three parameters (h, s and a)

with the summary-likelihood method. To do so, we

inferred parameters using Infusion’s default proce-

dures, based on an initial set of 110 empirical distribu-

tions (of which 10 are replicates). We refined the

summary-likelihood surface by adding three iterations

for each inference. We then calculated the proportion of

the true parameters contained in these intervals to esti-

mate the coverage probabilities for 90 and 95% confi-

dence intervals.

Unlike what Peter et al. (2010) found using ABC, we

observe that the coverage probability appears fairly con-

stant over all the parameter ranges with our method, in

particular when the true value lies close to the range lim-

its (Fig. 2). Indeed, all our estimates fit with theoretical
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expectations. The 2.5% and 97.5% quantiles of the distri-

bution of the expected proportion of successes for 200

binomial trials with probability 0.95 are 0.92 and 0.98,

and 0.855 and 0.940 for binomial trials with probability

0.90. The average coverages for the parameters s, h and a

are, respectively, 0.949, 0.957, 0.958 for 95% confidence

intervals, and 0.913, 0.900, 0.916 for 90% intervals. As in

the original study, the number of replicates is limited,

not only by the computation time of each replicate, but

also by issues with the full automation of the work flow

involving the external simulation program (here, IBD-

sim). This prevented a finer evaluation of coverages in

both the original and the present study.

The Infusion package has also been tested in the

conditions of the toy example. A total of 1000 Gaussian

data sets were simulated for h0 = (l = 4, r2 = 1), and

analysed as shown in Methods, with a total of 11 itera-

tions (see R script in Supporting Information). 96% of the

95% confidence regions for (l, r2) contained the true

value. The full distribution of the summary-likelihood

ratio P-values for h = h0 was indistinguishable from a

uniform distribution (Kolmogorov-Smirnov test,

P = 0.4701), indicating an appropriate coverage irrespec-

tive of the threshold used to define confidence regions.

When the amount of simulation is reduced down to four

iterations and only 100 realizations are drawn for each

simulated empirical distribution, the distribution of P-

values is barely affected (Fig. 3), although the variance of

estimation of the likelihood ratio is increased.

Discussion

In this work, we have developed methods and imple-

mented them in the package Infusion, to construct

estimates of likelihood surfaces for summary statistics,

from which likelihood ratio confidence intervals can be

constructed. We show that this provides intervals with

better controlled coverage than previous comparable

methods. The methodology is implemented in the stan-

dard R package Infusion. Users have to provide initial

ranges for the parameters, a simulation function or simu-

lated distributions of summary statistics, and must

choose some projection method(s) if too many summary

statistics are given in input, but the procedures imple-

mented in Infusion are otherwise fully automated.
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Fig. 2 Coverage properties under the PSC model. For each parameter s, h and a, coverage probabilities computed along their respective

ranges for 95% (orange) and 90% confidence intervals (blue) are represented. The points joined by solid lines are the coverage probabili-

ties of the intervals computed using summary likelihood. The coloured dashed lines represent the coverage probabilities of the intervals

computed using ABC under the same model, obtained from Peter et al. (2010, Fig. S3). The black lines mark the theoretical expectations

for 95% and 90% confidence intervals coverage.

Fig. 3 Distribution of P-values in the Gaussian model. The

empirical distribution of P-values for 1000 simulated data sets is

shown for either 11 iterations with 1000 realizations for each

simulated empirical distribution of statistics (black curve), or

four iterations with only 100 realizations (cyan curve).
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Simulated distributions may be provided by any pro-

gram, not depending on R.

We have emphasized one measure of performance:

the control of coverage of intervals for any parameter

value, according to which confidence intervals are

defined. This rests on the premise that such a criterion is

useful for evaluating statistical methods of inference (e.g.

Cox 2006, Appendix B). ABC methods may not have

been conceived to achieve such control. Yet, this per se

gives no reason for not applying the criterion to ABC.

The validity of a criterion derives only from its ability to

measure the consequences of applying an inference

method, not from the way the method was conceived.

Given that the practical performance of any generic

simulation-based inference method may degrade with

increasing number of parameters, we have first consid-

ered low-dimensional problems. We have not yet

tested our methods for large numbers of parameters,

where we expect the likelihood surface inference step

(the smoothing of summary-likelihood estimates) to be

a substantial computational bottleneck. The projection

step should be comparatively less problematic in high-

dimensional cases: machine-learning methods such as

neural networks and random forests have been

designed to handle quickly scores of input variables.

The procedures used in the smoothing step and for

the sampling of new parameter points have been

applied, in the context of full-data coalescent-based

likelihood surface inference, to five-parameter (Rousset

F, Beeravolu CR, Leblois R submitted) or even six-

parameter (unpublished) models. These procedures are

here used in a more economical way, requesting fewer

parameter points, so they should be practical for up to

at least six parameters. A harder constraint may be set

by the geometry package, which is used for the sam-

pling of new parameter points from a previously

inferred summary-likelihood surface, but which is not

expected to handle practically more than eight vari-

ables (Habel et al. 2015), in which case the sampling

procedure should be redefined.

With a large enough amount of simulation, the esti-

mated summary likelihood of a given parameter h

should become identical to the true summary-likelihood

value, and the performance of inferences based on esti-

mated likelihood ratios should become equivalent to that

of exact likelihood ratio-based inference of the summary

statistics. There are many ways in which the implemen-

tation can be modified and possibly improved to reduce

the amount of computation required to achieve a given

precision in estimation of likelihoods, or to fit models

with more parameters.

Small-sample corrections to likelihood ratio statistics

may also be needed. Indeed, likelihood ratio-based inter-

vals may not be accurate. The textbook argument for

using likelihood-based confidence intervals is based on

the asymptotic chi-square distribution of the likelihood

ratio for large samples, under the assumption that the

log-likelihood can be represented as a sum of n indepen-

dent and typically identically distributed random vari-

ables, generally corresponding to the log-likelihood of

observations from n individuals (e.g. Severini 2000). But,

in genetic applications, in particular, a sample of n genes

is typically not considered as resulting from n indepen-

dent draws. Instead, the n genes are related through their

common ancestry, and the realized ancestral genealogy

can be viewed as a single draw of a latent variable.

The impact of this dependence is clear for example on

the full-likelihood inference of the mutation rate under

the infinite allele model (IAM), where the variance of the

maximum-likelihood estimator decreases asymptotically

as 1/log(n) (Tavar�e 1994, p. 41), rather than as 1/n as is

usual for independent draws. Yet, even in this case, full-

data likelihood-based intervals achieve practically per-

fect coverage from small one-locus samples (Rousset

et al. submitted). We therefore anticipate that summary-

likelihood ratios will also be appropriate for most genetic

applications, although in some cases, they may still need

some form of small-sample correction. For example, a

Bartlett correction (e.g. Severini 2000) could be imple-

mented, requiring little or no additional simulation

effort.

In later developments, the following changes will

likely be considered. First, the simulation input could

be more similar to that of ABC, that is, consisting in

realizations of summary statistics, one for each of dif-

ferent parameters points h sampled from an instrumen-

tal prior distribution. Users might then be concerned

with the choice of the prior. However, given an appro-

priate processing of the simulation results, this choice

should not affect the actual coverage of the confidence

intervals more than the initial sampling of parameter

points in the present implementation, and a uniform

prior may then be appropriate. This form of input may

be useful from three perspectives. First, it would make

it easier for one to switch from ABC to summary likeli-

hood. Second, simulating one realization of the sum-

mary statistics for each of different parameters points

could also, at least in some cases, allow inference from

fewer simulations than required by the current imple-

mentation. Third, it could allow the recycling of tech-

niques previously developed for inference of posterior

densities, for the inference of likelihood surfaces. This

could be useful in particular to deal with higher-

dimensional parameter spaces.

Second, several projections methods have been con-

sidered in the literature and are accessible through the

package functions, but these are little general guidance

on which to choose. This problem is shared with ABC.
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Preliminary investigations (not shown) suggest that neu-

ral networks give reasonable results, but also that differ-

ent projection methods may be appropriate for different

types of simulation input. In particular, random forests

may not give good results for training data taken from

our initial simulation table with many replicates of a few

parameter values. Further work is clearly needed.

It is not easy to compare computation times with

those of ABC, as the two methods should converge to

different results for increasing computation times.

Such comparisons would make sense only for similar

accuracy of the results (here, for similar control of

coverage of confidence intervals). This is not easy to

define, since for given computation time, markedly

different degrees of accuracy may be reached in dif-

ferent regions of the parameter space. Thus, we make

no claim that our method is uniformly faster than

ABC to reach a certain accuracy, and very crude

results may even be easier to reach with current ABC

software. However, we obtained reasonable accuracy

with only four iterations in the population-size change

model, and also with four iterations in the Gaussian

model even though the number of realizations for

each simulated empirical distribution was reduced to

100. In such low-dimensional problems, the surface

inference is performed in a few seconds at most, and

thus, the main computational bottleneck may be the

simulation step. In our analysis of the population-size

change model, fewer simulations were required than

in the comparable ABC analysis by Peter et al. (2010).

A limited amount of simulation thus appears suffi-

cient at least to identify a parameter region of interest,

on which more refined simulations could be con-

ducted.

In conclusion, we have implemented summary like-

lihood, a method of inference based on the estimation

of likelihood of parameters from the simulated distri-

bution of summary statistics. We have shown that it is

applicable and performs according to theoretical expec-

tations, providing intervals with better controlled cov-

erage than a previous ABC method applied to the

same problem. Further work may reduce the amount

of simulation needed to reach the same precision of

inference.
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